基于建模的RRAM学习突触脑激发脉冲神经网络设计

G. Pedretti, S. Bianchi, V. Milo, A. Calderoni, N. Ramaswamy, D. Ielmini
{"title":"基于建模的RRAM学习突触脑激发脉冲神经网络设计","authors":"G. Pedretti, S. Bianchi, V. Milo, A. Calderoni, N. Ramaswamy, D. Ielmini","doi":"10.1109/IEDM.2017.8268467","DOIUrl":null,"url":null,"abstract":"Brain-inspired computing is currently gaining momentum as a viable technology for artificial intelligence enabling recognition, language processing and online unsupervised learning. Brain-inspired circuit design is currently hindered by 2 fundamental limits: (i) understanding the event-driven spike processing in the human brain, and (ii) developing predictive models to design and optimize cognitive circuits. Here we present a comprehensive model for spiking neural networks based on spike-timing dependent plasticity (STDP) in resistive switching memory (RRAM) synapses. Both a Monte Carlo (MC) model and an analytical model are presented to describe experimental data from a state-of-the-art neuromorphic hardware. The model can predict the learning efficiency and time as a function of the input noise and pattern size, thus paving the way for model-based design of cognitive brain-like circuits.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Modeling-based design of brain-inspired spiking neural networks with RRAM learning synapses\",\"authors\":\"G. Pedretti, S. Bianchi, V. Milo, A. Calderoni, N. Ramaswamy, D. Ielmini\",\"doi\":\"10.1109/IEDM.2017.8268467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-inspired computing is currently gaining momentum as a viable technology for artificial intelligence enabling recognition, language processing and online unsupervised learning. Brain-inspired circuit design is currently hindered by 2 fundamental limits: (i) understanding the event-driven spike processing in the human brain, and (ii) developing predictive models to design and optimize cognitive circuits. Here we present a comprehensive model for spiking neural networks based on spike-timing dependent plasticity (STDP) in resistive switching memory (RRAM) synapses. Both a Monte Carlo (MC) model and an analytical model are presented to describe experimental data from a state-of-the-art neuromorphic hardware. The model can predict the learning efficiency and time as a function of the input noise and pattern size, thus paving the way for model-based design of cognitive brain-like circuits.\",\"PeriodicalId\":412333,\"journal\":{\"name\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2017.8268467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2017.8268467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

以大脑为灵感的计算作为一种可行的人工智能技术,目前正获得越来越多的动力,这种技术可以实现识别、语言处理和在线无监督学习。以大脑为灵感的电路设计目前受到两个基本限制的阻碍:(1)理解人类大脑中事件驱动的尖峰处理;(2)开发预测模型来设计和优化认知电路。在这里,我们提出了一个基于电阻开关记忆(RRAM)突触中spike-timing dependent plasticity (STDP)的spike神经网络综合模型。蒙特卡罗(MC)模型和分析模型都提出了描述实验数据从最先进的神经形态硬件。该模型可以预测学习效率和时间作为输入噪声和模式大小的函数,从而为基于模型的类脑认知电路设计铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling-based design of brain-inspired spiking neural networks with RRAM learning synapses
Brain-inspired computing is currently gaining momentum as a viable technology for artificial intelligence enabling recognition, language processing and online unsupervised learning. Brain-inspired circuit design is currently hindered by 2 fundamental limits: (i) understanding the event-driven spike processing in the human brain, and (ii) developing predictive models to design and optimize cognitive circuits. Here we present a comprehensive model for spiking neural networks based on spike-timing dependent plasticity (STDP) in resistive switching memory (RRAM) synapses. Both a Monte Carlo (MC) model and an analytical model are presented to describe experimental data from a state-of-the-art neuromorphic hardware. The model can predict the learning efficiency and time as a function of the input noise and pattern size, thus paving the way for model-based design of cognitive brain-like circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信