移动机器人中受限空间的场景识别:现状与趋势

S. Orlova, A. Lopota
{"title":"移动机器人中受限空间的场景识别:现状与趋势","authors":"S. Orlova, A. Lopota","doi":"10.31776/rtcj.10102","DOIUrl":null,"url":null,"abstract":"The article discusses the problem of scene recognition for mobile robotics. Subtasks that have to be solved to implement a high-level understanding of the environment are considered. The basis here is an understanding of the geometry and semantics of the scene, which can be decomposed into subtasks of robot localization, mapping and semantic analysis. Simultaneous localization and mapping (SLAM) techniques have already been successfully applied and, although they have some as yet unresolved problems for dynamic environments, do not present a problem for this issue. The focus of the work is on the task of semantic analysis of the scene, which assumes three-dimensional segmentation. The field of 3D segmentation, like the field of image segmentation, has been decomposed into semantic and object segmentation, contrary to the needs of many potential applications. However, at present, panoptic segmentation is beginning to develop, combining the two previous ones and most fully describing the scene. The paper reviews the methods of 3D panoptic segmentation, identifies promising approaches. The actual problems of the scene recognition problem are also discussed. There is a clear trend towards the development of complex incremental methods of metric-semantic SLAM, which combine segmentation with SLAM methods, and the use of scene graphs, which allow describing the geometry, semantics of scene elements and the relationship between them. Scene graphs are especially promising for the field of mobile robotics, since they provide a transition from low-level representations of objects and spaces (for example, segmented point clouds) to describing a scene at a high level of abstraction, close to a human one (a list of objects in a scene, their properties and location relative to each other).","PeriodicalId":376940,"journal":{"name":"Robotics and Technical Cybernetics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scene recognition for confined spaces in mobile robotics: current state and tendencies\",\"authors\":\"S. Orlova, A. Lopota\",\"doi\":\"10.31776/rtcj.10102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article discusses the problem of scene recognition for mobile robotics. Subtasks that have to be solved to implement a high-level understanding of the environment are considered. The basis here is an understanding of the geometry and semantics of the scene, which can be decomposed into subtasks of robot localization, mapping and semantic analysis. Simultaneous localization and mapping (SLAM) techniques have already been successfully applied and, although they have some as yet unresolved problems for dynamic environments, do not present a problem for this issue. The focus of the work is on the task of semantic analysis of the scene, which assumes three-dimensional segmentation. The field of 3D segmentation, like the field of image segmentation, has been decomposed into semantic and object segmentation, contrary to the needs of many potential applications. However, at present, panoptic segmentation is beginning to develop, combining the two previous ones and most fully describing the scene. The paper reviews the methods of 3D panoptic segmentation, identifies promising approaches. The actual problems of the scene recognition problem are also discussed. There is a clear trend towards the development of complex incremental methods of metric-semantic SLAM, which combine segmentation with SLAM methods, and the use of scene graphs, which allow describing the geometry, semantics of scene elements and the relationship between them. Scene graphs are especially promising for the field of mobile robotics, since they provide a transition from low-level representations of objects and spaces (for example, segmented point clouds) to describing a scene at a high level of abstraction, close to a human one (a list of objects in a scene, their properties and location relative to each other).\",\"PeriodicalId\":376940,\"journal\":{\"name\":\"Robotics and Technical Cybernetics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Technical Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31776/rtcj.10102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Technical Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31776/rtcj.10102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了移动机器人的场景识别问题。考虑必须解决的子任务,以实现对环境的高级理解。这里的基础是对场景的几何和语义的理解,这可以分解为机器人定位、映射和语义分析的子任务。同步定位和映射(SLAM)技术已经成功地应用,尽管它们在动态环境中有一些尚未解决的问题,但对这个问题并不构成问题。该工作的重点是场景的语义分析任务,该任务假定三维分割。3D分割领域与图像分割领域一样,被分解为语义分割和对象分割,这与许多潜在应用的需求背道而驰。而目前,将前两种分割方法结合起来,最全面地描述场景的全视分割技术开始发展。本文综述了三维全视分割的方法,指出了有前途的方法。讨论了场景识别问题的实际问题。度量语义SLAM的复杂增量方法有明显的发展趋势,该方法将分割与SLAM方法相结合,并使用场景图来描述场景元素的几何、语义及其之间的关系。场景图在移动机器人领域尤其有前途,因为它们提供了从物体和空间的低级表示(例如,分割点云)到描述一个接近人类的高级抽象场景的过渡(场景中的物体列表,它们的属性和相对位置)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scene recognition for confined spaces in mobile robotics: current state and tendencies
The article discusses the problem of scene recognition for mobile robotics. Subtasks that have to be solved to implement a high-level understanding of the environment are considered. The basis here is an understanding of the geometry and semantics of the scene, which can be decomposed into subtasks of robot localization, mapping and semantic analysis. Simultaneous localization and mapping (SLAM) techniques have already been successfully applied and, although they have some as yet unresolved problems for dynamic environments, do not present a problem for this issue. The focus of the work is on the task of semantic analysis of the scene, which assumes three-dimensional segmentation. The field of 3D segmentation, like the field of image segmentation, has been decomposed into semantic and object segmentation, contrary to the needs of many potential applications. However, at present, panoptic segmentation is beginning to develop, combining the two previous ones and most fully describing the scene. The paper reviews the methods of 3D panoptic segmentation, identifies promising approaches. The actual problems of the scene recognition problem are also discussed. There is a clear trend towards the development of complex incremental methods of metric-semantic SLAM, which combine segmentation with SLAM methods, and the use of scene graphs, which allow describing the geometry, semantics of scene elements and the relationship between them. Scene graphs are especially promising for the field of mobile robotics, since they provide a transition from low-level representations of objects and spaces (for example, segmented point clouds) to describing a scene at a high level of abstraction, close to a human one (a list of objects in a scene, their properties and location relative to each other).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信