{"title":"采用射频能量单能量多数据(SEMD)传输模式为无线传感器节点电池供电","authors":"P. Kocher, S. Kaur","doi":"10.1109/EPSCICON.2012.6175276","DOIUrl":null,"url":null,"abstract":"The main problem in Wireless Communication Networks in the field nodes is that the battery resources are constrained. In multi-hop network, if one of the nodes is switched off due to low battery power, the network is disconnected and the field information could be lost. While energy efficiency of communication protocols tries to ensure extended network lifetime, but battery drainage problem still remains. In many applications, it is very difficult or infeasible to replace the exhausted batteries. Recharging the nodes without shutting down the network is very important for uninterrupted operation of the network and also to keep the network maintenance cost to a minimum. One solution is energy harvesting. There have been proposals on tapping the non-network ambient energy sources. Recharging from RF sources is being investigated by other researchers, which proposes to use very high power external source which involves a significant waste of RF energy. We propose to use the RF energy that is already available in the network. Our approach does not depend on any specific external energy sources. In this work, we explore the means of imparting energy to the field nodes by exploiting network topology and communication protocols. Our aim is to achieve a condition that allows equal distribution of energy among all nodes. To achieve this, we propose a multi hop charging. We test the one-dimensional as well as two-dimensional topologies, antenna radiation patterns, and coordination among nodes in receiving and radiating energy, to achieve the best possible equitable energy distribution.","PeriodicalId":143947,"journal":{"name":"2012 International Conference on Power, Signals, Controls and Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Powering of wireless sensor nodes battery using Single Energy Multi Data (SEMD) transmission mode by Radio Frequency energy\",\"authors\":\"P. Kocher, S. Kaur\",\"doi\":\"10.1109/EPSCICON.2012.6175276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main problem in Wireless Communication Networks in the field nodes is that the battery resources are constrained. In multi-hop network, if one of the nodes is switched off due to low battery power, the network is disconnected and the field information could be lost. While energy efficiency of communication protocols tries to ensure extended network lifetime, but battery drainage problem still remains. In many applications, it is very difficult or infeasible to replace the exhausted batteries. Recharging the nodes without shutting down the network is very important for uninterrupted operation of the network and also to keep the network maintenance cost to a minimum. One solution is energy harvesting. There have been proposals on tapping the non-network ambient energy sources. Recharging from RF sources is being investigated by other researchers, which proposes to use very high power external source which involves a significant waste of RF energy. We propose to use the RF energy that is already available in the network. Our approach does not depend on any specific external energy sources. In this work, we explore the means of imparting energy to the field nodes by exploiting network topology and communication protocols. Our aim is to achieve a condition that allows equal distribution of energy among all nodes. To achieve this, we propose a multi hop charging. We test the one-dimensional as well as two-dimensional topologies, antenna radiation patterns, and coordination among nodes in receiving and radiating energy, to achieve the best possible equitable energy distribution.\",\"PeriodicalId\":143947,\"journal\":{\"name\":\"2012 International Conference on Power, Signals, Controls and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Power, Signals, Controls and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPSCICON.2012.6175276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Power, Signals, Controls and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPSCICON.2012.6175276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Powering of wireless sensor nodes battery using Single Energy Multi Data (SEMD) transmission mode by Radio Frequency energy
The main problem in Wireless Communication Networks in the field nodes is that the battery resources are constrained. In multi-hop network, if one of the nodes is switched off due to low battery power, the network is disconnected and the field information could be lost. While energy efficiency of communication protocols tries to ensure extended network lifetime, but battery drainage problem still remains. In many applications, it is very difficult or infeasible to replace the exhausted batteries. Recharging the nodes without shutting down the network is very important for uninterrupted operation of the network and also to keep the network maintenance cost to a minimum. One solution is energy harvesting. There have been proposals on tapping the non-network ambient energy sources. Recharging from RF sources is being investigated by other researchers, which proposes to use very high power external source which involves a significant waste of RF energy. We propose to use the RF energy that is already available in the network. Our approach does not depend on any specific external energy sources. In this work, we explore the means of imparting energy to the field nodes by exploiting network topology and communication protocols. Our aim is to achieve a condition that allows equal distribution of energy among all nodes. To achieve this, we propose a multi hop charging. We test the one-dimensional as well as two-dimensional topologies, antenna radiation patterns, and coordination among nodes in receiving and radiating energy, to achieve the best possible equitable energy distribution.