可进化硬件还是可学习硬件?从时序逻辑约束中归纳状态机

M. Perkowski, A. Mishchenko, A. N. Chebotarev
{"title":"可进化硬件还是可学习硬件?从时序逻辑约束中归纳状态机","authors":"M. Perkowski, A. Mishchenko, A. N. Chebotarev","doi":"10.1109/EH.1999.785444","DOIUrl":null,"url":null,"abstract":"We advocate an approach to learning hardware based on induction of finite state machines from temporal logic constraints. The method involves training on examples, constraints solving, determinization, state machine minimization, structural mapping, functional decomposition of multi-valued logic functions and relations, and finally, FPGA mapping. In our approach, learning takes place on the level of constraint acquisition and functional decomposition rather than on the lower level of programming binary switches. Our learning strategy is based on the principle of Occam's Razor, facilitating generalization and discovery. We implemented several learning algorithms using DEC-PERLE-1 FPGA board.","PeriodicalId":234639,"journal":{"name":"Proceedings of the First NASA/DoD Workshop on Evolvable Hardware","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Evolvable hardware or learning hardware? induction of state machines from temporal logic constraints\",\"authors\":\"M. Perkowski, A. Mishchenko, A. N. Chebotarev\",\"doi\":\"10.1109/EH.1999.785444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We advocate an approach to learning hardware based on induction of finite state machines from temporal logic constraints. The method involves training on examples, constraints solving, determinization, state machine minimization, structural mapping, functional decomposition of multi-valued logic functions and relations, and finally, FPGA mapping. In our approach, learning takes place on the level of constraint acquisition and functional decomposition rather than on the lower level of programming binary switches. Our learning strategy is based on the principle of Occam's Razor, facilitating generalization and discovery. We implemented several learning algorithms using DEC-PERLE-1 FPGA board.\",\"PeriodicalId\":234639,\"journal\":{\"name\":\"Proceedings of the First NASA/DoD Workshop on Evolvable Hardware\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First NASA/DoD Workshop on Evolvable Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EH.1999.785444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First NASA/DoD Workshop on Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.1999.785444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提倡一种基于从时间逻辑约束中归纳有限状态机来学习硬件的方法。该方法包括样例训练、约束求解、确定、状态机最小化、结构映射、多值逻辑函数和关系的功能分解,最后是FPGA映射。在我们的方法中,学习发生在约束获取和功能分解的层次上,而不是在编程二进制开关的较低层次上。我们的学习策略是基于奥卡姆剃刀原理,促进泛化和发现。我们使用DEC-PERLE-1 FPGA板实现了几种学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolvable hardware or learning hardware? induction of state machines from temporal logic constraints
We advocate an approach to learning hardware based on induction of finite state machines from temporal logic constraints. The method involves training on examples, constraints solving, determinization, state machine minimization, structural mapping, functional decomposition of multi-valued logic functions and relations, and finally, FPGA mapping. In our approach, learning takes place on the level of constraint acquisition and functional decomposition rather than on the lower level of programming binary switches. Our learning strategy is based on the principle of Occam's Razor, facilitating generalization and discovery. We implemented several learning algorithms using DEC-PERLE-1 FPGA board.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信