DCA和CSP中倒装芯片结构的热机械可靠性

A. Schubert, R. Dudek, D. Vogel, B. Michel, H. Reichl, H. Jiang
{"title":"DCA和CSP中倒装芯片结构的热机械可靠性","authors":"A. Schubert, R. Dudek, D. Vogel, B. Michel, H. Reichl, H. Jiang","doi":"10.1109/ISAPM.1998.664453","DOIUrl":null,"url":null,"abstract":"The continuing demand towards high-density and low profile integrated circuit packaging has accelerated the development of flip chip structures as used in direct chip attach (DCA) technology and chip size packages (CSP). The advantages in density, cost and electrical performance are obvious. Solder joints, the most widely used flip chip interconnects, have a relatively low structural compliance due to the large thermal expansion mismatch between silicon die and the organic substrate. This causes high thermally induced creep strain on the interconnects during temperature cycling and leads to early failure of the solder connections. The reliability of flip chip structures can be enhanced by applying an epoxy-based underfill between the chip and the substrate, encapsulating the solder joints. However, over ranges of design, process, and material parameters, different failure modes are observed with significant dependence on material properties and geometry. Nonlinear finite element analysis for flip chip structures is carried out to investigate the reliability impact due to a number of selected design and material parameters. Especially two fundamental issues are addressed, namely, the optimization of thermomechanical properties of underfill materials and manufacturing process-induced defects.","PeriodicalId":354229,"journal":{"name":"Proceedings. 4th International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.98EX153)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Thermo-mechanical reliability of flip chip structures used in DCA and CSP\",\"authors\":\"A. Schubert, R. Dudek, D. Vogel, B. Michel, H. Reichl, H. Jiang\",\"doi\":\"10.1109/ISAPM.1998.664453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuing demand towards high-density and low profile integrated circuit packaging has accelerated the development of flip chip structures as used in direct chip attach (DCA) technology and chip size packages (CSP). The advantages in density, cost and electrical performance are obvious. Solder joints, the most widely used flip chip interconnects, have a relatively low structural compliance due to the large thermal expansion mismatch between silicon die and the organic substrate. This causes high thermally induced creep strain on the interconnects during temperature cycling and leads to early failure of the solder connections. The reliability of flip chip structures can be enhanced by applying an epoxy-based underfill between the chip and the substrate, encapsulating the solder joints. However, over ranges of design, process, and material parameters, different failure modes are observed with significant dependence on material properties and geometry. Nonlinear finite element analysis for flip chip structures is carried out to investigate the reliability impact due to a number of selected design and material parameters. Especially two fundamental issues are addressed, namely, the optimization of thermomechanical properties of underfill materials and manufacturing process-induced defects.\",\"PeriodicalId\":354229,\"journal\":{\"name\":\"Proceedings. 4th International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.98EX153)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 4th International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.98EX153)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAPM.1998.664453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 4th International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.98EX153)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAPM.1998.664453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

对高密度和低轮廓集成电路封装的持续需求加速了用于直接芯片连接(DCA)技术和芯片尺寸封装(CSP)的倒装芯片结构的发展。在密度、成本和电气性能方面的优势是显而易见的。由于硅晶片与有机衬底之间存在较大的热膨胀失配,因此,作为应用最广泛的倒装芯片互连,焊点的结构顺应性相对较低。在温度循环过程中,这会在互连上引起高热致蠕变应变,并导致焊料连接的早期失效。倒装芯片结构的可靠性可以通过在芯片和衬底之间涂覆环氧树脂衬底,封装焊点来提高。然而,在设计、工艺和材料参数的范围内,观察到不同的失效模式与材料特性和几何形状有很大的关系。对倒装芯片结构进行了非线性有限元分析,研究了不同设计参数和材料参数对倒装芯片结构可靠性的影响。特别是解决了两个基本问题,即下填料的热力学性能优化和制造工艺缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermo-mechanical reliability of flip chip structures used in DCA and CSP
The continuing demand towards high-density and low profile integrated circuit packaging has accelerated the development of flip chip structures as used in direct chip attach (DCA) technology and chip size packages (CSP). The advantages in density, cost and electrical performance are obvious. Solder joints, the most widely used flip chip interconnects, have a relatively low structural compliance due to the large thermal expansion mismatch between silicon die and the organic substrate. This causes high thermally induced creep strain on the interconnects during temperature cycling and leads to early failure of the solder connections. The reliability of flip chip structures can be enhanced by applying an epoxy-based underfill between the chip and the substrate, encapsulating the solder joints. However, over ranges of design, process, and material parameters, different failure modes are observed with significant dependence on material properties and geometry. Nonlinear finite element analysis for flip chip structures is carried out to investigate the reliability impact due to a number of selected design and material parameters. Especially two fundamental issues are addressed, namely, the optimization of thermomechanical properties of underfill materials and manufacturing process-induced defects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信