机器学习技术在预测客户流失中的适用性

Niken Prasasti, H. Ohwada
{"title":"机器学习技术在预测客户流失中的适用性","authors":"Niken Prasasti, H. Ohwada","doi":"10.1109/ISTMET.2014.6936498","DOIUrl":null,"url":null,"abstract":"Machine learning is an established method of predicting customer defection from a contractual business. However, no systematic comparison or evaluation of the different machine-learning techniques has been performed. In this study, we provide a comprehensive comparison of different machine-learning techniques with three different data sets of a software company to predict customer defection. The evaluation criteria of the techniques are understandability of the model, convenience of using the model, time efficiency in running the learning model, and performance of predicting customer defection.","PeriodicalId":364834,"journal":{"name":"2014 International Symposium on Technology Management and Emerging Technologies","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Applicability of machine-learning techniques in predicting customer defection\",\"authors\":\"Niken Prasasti, H. Ohwada\",\"doi\":\"10.1109/ISTMET.2014.6936498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is an established method of predicting customer defection from a contractual business. However, no systematic comparison or evaluation of the different machine-learning techniques has been performed. In this study, we provide a comprehensive comparison of different machine-learning techniques with three different data sets of a software company to predict customer defection. The evaluation criteria of the techniques are understandability of the model, convenience of using the model, time efficiency in running the learning model, and performance of predicting customer defection.\",\"PeriodicalId\":364834,\"journal\":{\"name\":\"2014 International Symposium on Technology Management and Emerging Technologies\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Symposium on Technology Management and Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTMET.2014.6936498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Technology Management and Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTMET.2014.6936498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

机器学习是一种预测合同业务客户流失的成熟方法。然而,还没有对不同的机器学习技术进行系统的比较或评估。在这项研究中,我们对一家软件公司的三种不同数据集的不同机器学习技术进行了全面的比较,以预测客户流失。评价标准为模型的可理解性、模型使用的便利性、学习模型运行的时间效率和预测客户流失的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applicability of machine-learning techniques in predicting customer defection
Machine learning is an established method of predicting customer defection from a contractual business. However, no systematic comparison or evaluation of the different machine-learning techniques has been performed. In this study, we provide a comprehensive comparison of different machine-learning techniques with three different data sets of a software company to predict customer defection. The evaluation criteria of the techniques are understandability of the model, convenience of using the model, time efficiency in running the learning model, and performance of predicting customer defection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信