一种新的前馈多层神经网络自适应学习训练算法,应用于函数逼近问题

Zahra Ghorrati
{"title":"一种新的前馈多层神经网络自适应学习训练算法,应用于函数逼近问题","authors":"Zahra Ghorrati","doi":"10.1109/IRC.2020.00095","DOIUrl":null,"url":null,"abstract":"Slow convergence and inverse hessian calculation respectively, are the major drawbacks of first-order and second-order learning algorithms. This paper presents a new efficient algorithm to train feed-forward Multi-Layered Perceptron (MLP) neural network that doesn't require explicit computation of the inverse Hessian matrix. Due to the use of mathematical adaptive learning rates in the purposed approach, the rating speed is improved significantly compared to the first-order algorithms. The proposed method is applied to some function approximation problems and compared with backpropagation and modified backpropagation.","PeriodicalId":232817,"journal":{"name":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","volume":"53 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Adaptive Learning algorithm to train Feed-Forward Multi-layer Neural Networks, Applied on Function Approximation Problem\",\"authors\":\"Zahra Ghorrati\",\"doi\":\"10.1109/IRC.2020.00095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Slow convergence and inverse hessian calculation respectively, are the major drawbacks of first-order and second-order learning algorithms. This paper presents a new efficient algorithm to train feed-forward Multi-Layered Perceptron (MLP) neural network that doesn't require explicit computation of the inverse Hessian matrix. Due to the use of mathematical adaptive learning rates in the purposed approach, the rating speed is improved significantly compared to the first-order algorithms. The proposed method is applied to some function approximation problems and compared with backpropagation and modified backpropagation.\",\"PeriodicalId\":232817,\"journal\":{\"name\":\"2020 Fourth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"53 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Fourth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2020.00095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2020.00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一阶和二阶学习算法的主要缺点分别是收敛速度慢和逆hessian计算。本文提出了一种不需要显式计算逆Hessian矩阵的前馈多层感知器(MLP)神经网络训练算法。由于在目标方法中使用了数学自适应学习率,与一阶算法相比,评级速度显着提高。将该方法应用于一些函数逼近问题,并与反向传播和修正反向传播进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Adaptive Learning algorithm to train Feed-Forward Multi-layer Neural Networks, Applied on Function Approximation Problem
Slow convergence and inverse hessian calculation respectively, are the major drawbacks of first-order and second-order learning algorithms. This paper presents a new efficient algorithm to train feed-forward Multi-Layered Perceptron (MLP) neural network that doesn't require explicit computation of the inverse Hessian matrix. Due to the use of mathematical adaptive learning rates in the purposed approach, the rating speed is improved significantly compared to the first-order algorithms. The proposed method is applied to some function approximation problems and compared with backpropagation and modified backpropagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信