智能交通系统实时车辆计数器系统

I. Purnama, A. Zaini, B. Putra, M. Hariadi
{"title":"智能交通系统实时车辆计数器系统","authors":"I. Purnama, A. Zaini, B. Putra, M. Hariadi","doi":"10.1109/ICICI-BME.2009.5417239","DOIUrl":null,"url":null,"abstract":"This paper presents real time vehicle counter system for Intelligent Transportation System. A stream of video frames is processed using a sequence of procedures: foreground extraction, object segmentation and labeling, and object classification to differentiate between motor- cycle and car. Foreground extraction utilizing a simple method, background subtraction, and the segmentation utilizing methods of mathematical morphology: erotion, dilation and connected component labeling. Classification process is based on the size of connected component. In the image where no shadow of unwanted objects, the system delivers the success rate of a maximum 97% to recognize motorcycle and a maximum 95% to recognize car.","PeriodicalId":191194,"journal":{"name":"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Real time vehicle counter system for Intelligent Transportation System\",\"authors\":\"I. Purnama, A. Zaini, B. Putra, M. Hariadi\",\"doi\":\"10.1109/ICICI-BME.2009.5417239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents real time vehicle counter system for Intelligent Transportation System. A stream of video frames is processed using a sequence of procedures: foreground extraction, object segmentation and labeling, and object classification to differentiate between motor- cycle and car. Foreground extraction utilizing a simple method, background subtraction, and the segmentation utilizing methods of mathematical morphology: erotion, dilation and connected component labeling. Classification process is based on the size of connected component. In the image where no shadow of unwanted objects, the system delivers the success rate of a maximum 97% to recognize motorcycle and a maximum 95% to recognize car.\",\"PeriodicalId\":191194,\"journal\":{\"name\":\"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICI-BME.2009.5417239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICI-BME.2009.5417239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

介绍了智能交通系统中的实时车辆计数器系统。视频帧流使用一系列程序进行处理:前景提取、对象分割和标记、对象分类以区分摩托车和汽车。前景提取利用简单的方法,背景减法和分割利用数学形态学的方法:膨胀,膨胀和连接分量标记。分类过程是基于连接组件的大小。在没有多余物体阴影的图像中,系统对摩托车的识别成功率最高可达97%,对汽车的识别成功率最高可达95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real time vehicle counter system for Intelligent Transportation System
This paper presents real time vehicle counter system for Intelligent Transportation System. A stream of video frames is processed using a sequence of procedures: foreground extraction, object segmentation and labeling, and object classification to differentiate between motor- cycle and car. Foreground extraction utilizing a simple method, background subtraction, and the segmentation utilizing methods of mathematical morphology: erotion, dilation and connected component labeling. Classification process is based on the size of connected component. In the image where no shadow of unwanted objects, the system delivers the success rate of a maximum 97% to recognize motorcycle and a maximum 95% to recognize car.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信