一种用于频率估计的自适应重采样TVAR粒子滤波器

Nattapol Aunsri
{"title":"一种用于频率估计的自适应重采样TVAR粒子滤波器","authors":"Nattapol Aunsri","doi":"10.1109/ISPACS.2016.7824772","DOIUrl":null,"url":null,"abstract":"Extraction of frequency content embedded in a signal is an very important task for signal processing applications. In this paper, we present an approach for frequency tracking of a noisy Time-series using adaptive resampling particle filtering method along with the time-varying autoregressive (TVAR) model. The adaptive resampling scheme is used to address the problem of impoverishment that usually occurred in the conventional resampling stage. Simulation results demonstrate the benefits in using the adaptive method in terms of exhibiting greater tracking results of the frequency content of the signals.","PeriodicalId":131543,"journal":{"name":"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A TVAR particle filter with adaptive resampling for frequency estimation\",\"authors\":\"Nattapol Aunsri\",\"doi\":\"10.1109/ISPACS.2016.7824772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extraction of frequency content embedded in a signal is an very important task for signal processing applications. In this paper, we present an approach for frequency tracking of a noisy Time-series using adaptive resampling particle filtering method along with the time-varying autoregressive (TVAR) model. The adaptive resampling scheme is used to address the problem of impoverishment that usually occurred in the conventional resampling stage. Simulation results demonstrate the benefits in using the adaptive method in terms of exhibiting greater tracking results of the frequency content of the signals.\",\"PeriodicalId\":131543,\"journal\":{\"name\":\"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2016.7824772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2016.7824772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在信号处理应用中,频率内容的提取是一个非常重要的任务。本文提出了一种基于时变自回归(TVAR)模型的自适应重采样粒子滤波方法对含噪时间序列进行频率跟踪的方法。采用自适应重采样方案,解决了传统重采样阶段常出现的贫化问题。仿真结果表明,采用自适应方法可以更好地跟踪信号的频率内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A TVAR particle filter with adaptive resampling for frequency estimation
Extraction of frequency content embedded in a signal is an very important task for signal processing applications. In this paper, we present an approach for frequency tracking of a noisy Time-series using adaptive resampling particle filtering method along with the time-varying autoregressive (TVAR) model. The adaptive resampling scheme is used to address the problem of impoverishment that usually occurred in the conventional resampling stage. Simulation results demonstrate the benefits in using the adaptive method in terms of exhibiting greater tracking results of the frequency content of the signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信