一种基于互相关的低功耗稀疏系统辨识算法

F. O'Regan, C. Heneghan
{"title":"一种基于互相关的低功耗稀疏系统辨识算法","authors":"F. O'Regan, C. Heneghan","doi":"10.1109/SIPS.2003.1235637","DOIUrl":null,"url":null,"abstract":"We present a novel algorithm and architecture for adaptive sparse system identification. The algorithm uses a cross correlation to identify active tap weights and uses the scaled version of the cross correlation estimate to seed a reduced complexity adaptive filter. We call the algorithm the sparse cross correlation (SCC) algorithm. Simulations for the finite precision case are presented. Comparisons of area, critical path, power and algorithmic convergence between the normalized least mean squares (NLMS) algorithm and the SCC algorithm are presented. The SCC algorithm is shown to be lower power in both the steady state (trained) and transient (training) operation. Results for a test implementation show that approximately 20% smaller circuit area and approximately 40% lower power consumption than the standard NLMS algorithm can be achieved.","PeriodicalId":173186,"journal":{"name":"2003 IEEE Workshop on Signal Processing Systems (IEEE Cat. No.03TH8682)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A low power algorithm for sparse system identification using cross correlation\",\"authors\":\"F. O'Regan, C. Heneghan\",\"doi\":\"10.1109/SIPS.2003.1235637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel algorithm and architecture for adaptive sparse system identification. The algorithm uses a cross correlation to identify active tap weights and uses the scaled version of the cross correlation estimate to seed a reduced complexity adaptive filter. We call the algorithm the sparse cross correlation (SCC) algorithm. Simulations for the finite precision case are presented. Comparisons of area, critical path, power and algorithmic convergence between the normalized least mean squares (NLMS) algorithm and the SCC algorithm are presented. The SCC algorithm is shown to be lower power in both the steady state (trained) and transient (training) operation. Results for a test implementation show that approximately 20% smaller circuit area and approximately 40% lower power consumption than the standard NLMS algorithm can be achieved.\",\"PeriodicalId\":173186,\"journal\":{\"name\":\"2003 IEEE Workshop on Signal Processing Systems (IEEE Cat. No.03TH8682)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE Workshop on Signal Processing Systems (IEEE Cat. No.03TH8682)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.2003.1235637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE Workshop on Signal Processing Systems (IEEE Cat. No.03TH8682)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2003.1235637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种新的自适应稀疏系统识别算法和体系结构。该算法使用相互关联来识别主动抽头权重,并使用相互关联估计的缩放版本来播种降低复杂性的自适应滤波器。我们称该算法为稀疏互相关(SCC)算法。给出了有限精度情况下的仿真结果。比较了归一化最小均二乘(NLMS)算法与SCC算法的面积、关键路径、功率和算法收敛性。SCC算法在稳态(训练)和瞬态(训练)运行中都具有较低的功耗。测试结果表明,与标准NLMS算法相比,该算法的电路面积减少了约20%,功耗降低了约40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A low power algorithm for sparse system identification using cross correlation
We present a novel algorithm and architecture for adaptive sparse system identification. The algorithm uses a cross correlation to identify active tap weights and uses the scaled version of the cross correlation estimate to seed a reduced complexity adaptive filter. We call the algorithm the sparse cross correlation (SCC) algorithm. Simulations for the finite precision case are presented. Comparisons of area, critical path, power and algorithmic convergence between the normalized least mean squares (NLMS) algorithm and the SCC algorithm are presented. The SCC algorithm is shown to be lower power in both the steady state (trained) and transient (training) operation. Results for a test implementation show that approximately 20% smaller circuit area and approximately 40% lower power consumption than the standard NLMS algorithm can be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信