基于哈欠提取的驾驶员疲劳检测

Nawal Alioua, A. Amine, M. Rziza
{"title":"基于哈欠提取的驾驶员疲劳检测","authors":"Nawal Alioua, A. Amine, M. Rziza","doi":"10.1155/2014/678786","DOIUrl":null,"url":null,"abstract":"The increasing number of traffic accidents is principally caused by fatigue. In fact, the fatigue presents \na real danger on road since it reduces driver capacity to react and analyze information. In this paper we propose an efficient and nonintrusive system for monitoring driver fatigue using yawning extraction. The proposed scheme uses face extraction based support vector machine (SVM) and a new approach for mouth detection, based on circular Hough transform (CHT), applied on mouth extracted regions. Our system does not require any training data at any step or special cameras. Some experimental results showing system performance are reported. These experiments are applied over real video sequences acquired by low cost web camera and recorded in various lighting conditions.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"Driver's fatigue detection based on yawning extraction\",\"authors\":\"Nawal Alioua, A. Amine, M. Rziza\",\"doi\":\"10.1155/2014/678786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing number of traffic accidents is principally caused by fatigue. In fact, the fatigue presents \\na real danger on road since it reduces driver capacity to react and analyze information. In this paper we propose an efficient and nonintrusive system for monitoring driver fatigue using yawning extraction. The proposed scheme uses face extraction based support vector machine (SVM) and a new approach for mouth detection, based on circular Hough transform (CHT), applied on mouth extracted regions. Our system does not require any training data at any step or special cameras. Some experimental results showing system performance are reported. These experiments are applied over real video sequences acquired by low cost web camera and recorded in various lighting conditions.\",\"PeriodicalId\":269774,\"journal\":{\"name\":\"International Journal of Vehicular Technology\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/678786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/678786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

摘要

日益增多的交通事故主要是由疲劳引起的。事实上,疲劳在道路上呈现出真正的危险,因为它降低了驾驶员的反应和分析信息的能力。在本文中,我们提出了一个有效的和非侵入性的系统监测驾驶员疲劳打哈欠提取。该方案采用基于人脸提取的支持向量机(SVM)和一种基于圆形霍夫变换(CHT)的口检测新方法,并将其应用于口提取区域。我们的系统在任何步骤都不需要任何训练数据或特殊摄像机。实验结果显示了系统的性能。这些实验应用于低成本网络摄像机获取的真实视频序列,并在各种照明条件下记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Driver's fatigue detection based on yawning extraction
The increasing number of traffic accidents is principally caused by fatigue. In fact, the fatigue presents a real danger on road since it reduces driver capacity to react and analyze information. In this paper we propose an efficient and nonintrusive system for monitoring driver fatigue using yawning extraction. The proposed scheme uses face extraction based support vector machine (SVM) and a new approach for mouth detection, based on circular Hough transform (CHT), applied on mouth extracted regions. Our system does not require any training data at any step or special cameras. Some experimental results showing system performance are reported. These experiments are applied over real video sequences acquired by low cost web camera and recorded in various lighting conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信