斯特利河自动洪水预报系统的验证

B. Khrystiuk, L. Gorbachova, V. Shpyg
{"title":"斯特利河自动洪水预报系统的验证","authors":"B. Khrystiuk, L. Gorbachova, V. Shpyg","doi":"10.31577/ahs-2022-0023.02.0026","DOIUrl":null,"url":null,"abstract":"The physical and geographical location of the Stryi River Basin causes the formation of catastrophic floods, which are regularly forming in this region and cause significant material damage and, sometimes, the death of people. The last catastrophic flood took place on the Stryi River in June 2020. Thus, the creation of a modern system for forecasting the streamflow of the Stryi River is a very important task. This paper describes such an automated flood forecasting system (FFS Stryi) that is developed at the Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine. The basis of the system is the hydrological module NAM of the Rainfall-Runoff software complex MIKE 11 (Denmark), which uses the forecasted weather parameters from the numerical mesoscale atmospheric model WRF ARW v. 3.6.1 (USA). The objective of this study is to verify this system and identify the factors that affect the accuracy of flood forecasting of the Stryi River. The system of streamflow forecasting of the Stryi River uses the continuous series of calculated (historical) levels and discharges, air temperature, precipitation, evaporation, as well as the forecast of meteorological indicators for 5 days. The system is set to work with a three-hour time step in the automatic regime. Verification of FFS Stryi according to the historical meteorological data showed that the system reproduces the streamflow of the Stryi River with satisfactory quality. The accuracy of discharge forecasting depends on the accuracy of weather parameters forecasting and, above all, the quantity of precipitation and the time of their falling out. Errors of hydrological forecasting are caused by an imperfect hydrometeorological network of observations (number of points and frequency of measurement), a digital model of the relief of the Stryi River basin and errors of weather parameters forecasts.","PeriodicalId":321483,"journal":{"name":"Acta Hydrologica Slovaca","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification of the automated flood forecasting system on the Stryi River\",\"authors\":\"B. Khrystiuk, L. Gorbachova, V. Shpyg\",\"doi\":\"10.31577/ahs-2022-0023.02.0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The physical and geographical location of the Stryi River Basin causes the formation of catastrophic floods, which are regularly forming in this region and cause significant material damage and, sometimes, the death of people. The last catastrophic flood took place on the Stryi River in June 2020. Thus, the creation of a modern system for forecasting the streamflow of the Stryi River is a very important task. This paper describes such an automated flood forecasting system (FFS Stryi) that is developed at the Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine. The basis of the system is the hydrological module NAM of the Rainfall-Runoff software complex MIKE 11 (Denmark), which uses the forecasted weather parameters from the numerical mesoscale atmospheric model WRF ARW v. 3.6.1 (USA). The objective of this study is to verify this system and identify the factors that affect the accuracy of flood forecasting of the Stryi River. The system of streamflow forecasting of the Stryi River uses the continuous series of calculated (historical) levels and discharges, air temperature, precipitation, evaporation, as well as the forecast of meteorological indicators for 5 days. The system is set to work with a three-hour time step in the automatic regime. Verification of FFS Stryi according to the historical meteorological data showed that the system reproduces the streamflow of the Stryi River with satisfactory quality. The accuracy of discharge forecasting depends on the accuracy of weather parameters forecasting and, above all, the quantity of precipitation and the time of their falling out. Errors of hydrological forecasting are caused by an imperfect hydrometeorological network of observations (number of points and frequency of measurement), a digital model of the relief of the Stryi River basin and errors of weather parameters forecasts.\",\"PeriodicalId\":321483,\"journal\":{\"name\":\"Acta Hydrologica Slovaca\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Hydrologica Slovaca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31577/ahs-2022-0023.02.0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Hydrologica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31577/ahs-2022-0023.02.0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

斯特雷河流域的自然和地理位置造成了灾难性洪水的形成,这种洪水经常在该地区形成,造成重大的物质损失,有时甚至造成人员死亡。上一次灾难性洪水发生在2020年6月的斯特雷河上。因此,建立一个预测斯特利河流量的现代系统是一项非常重要的任务。本文介绍了由乌克兰国家应急服务乌克兰水文气象研究所和乌克兰国家科学院共同开发的自动洪水预报系统FFS Stryi。该系统的基础是降雨-径流软件复合体MIKE 11(丹麦)的水文模块NAM,它使用来自数值中尺度大气模式WRF ARW v. 3.6.1(美国)的预报天气参数。本研究的目的是对该系统进行验证,并找出影响斯特利河洪水预报准确性的因素。斯特利河流量预报系统采用5天的计算(历史)水位和流量、气温、降水、蒸发量以及气象指标的连续序列预报。该系统被设置为在自动机制中以三小时的时间步骤工作。根据历史气象资料对FFS Stryi进行了验证,结果表明该系统能较好地再现Stryi河的流量。流量预报的准确性取决于天气参数预报的准确性,最重要的是降水的数量和降水的时间。水文预报的误差是由于水文气象观测网(测点数目和频率)的不完善、斯特利河流域地形的数字模型和天气参数预报的误差造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verification of the automated flood forecasting system on the Stryi River
The physical and geographical location of the Stryi River Basin causes the formation of catastrophic floods, which are regularly forming in this region and cause significant material damage and, sometimes, the death of people. The last catastrophic flood took place on the Stryi River in June 2020. Thus, the creation of a modern system for forecasting the streamflow of the Stryi River is a very important task. This paper describes such an automated flood forecasting system (FFS Stryi) that is developed at the Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine. The basis of the system is the hydrological module NAM of the Rainfall-Runoff software complex MIKE 11 (Denmark), which uses the forecasted weather parameters from the numerical mesoscale atmospheric model WRF ARW v. 3.6.1 (USA). The objective of this study is to verify this system and identify the factors that affect the accuracy of flood forecasting of the Stryi River. The system of streamflow forecasting of the Stryi River uses the continuous series of calculated (historical) levels and discharges, air temperature, precipitation, evaporation, as well as the forecast of meteorological indicators for 5 days. The system is set to work with a three-hour time step in the automatic regime. Verification of FFS Stryi according to the historical meteorological data showed that the system reproduces the streamflow of the Stryi River with satisfactory quality. The accuracy of discharge forecasting depends on the accuracy of weather parameters forecasting and, above all, the quantity of precipitation and the time of their falling out. Errors of hydrological forecasting are caused by an imperfect hydrometeorological network of observations (number of points and frequency of measurement), a digital model of the relief of the Stryi River basin and errors of weather parameters forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信