在所有光照条件下基于深度学习的行人检测

Koti Naga Renu Chebrolu, P. Kumar
{"title":"在所有光照条件下基于深度学习的行人检测","authors":"Koti Naga Renu Chebrolu, P. Kumar","doi":"10.1109/ICCSP.2019.8698101","DOIUrl":null,"url":null,"abstract":"Multispectral pedestrian detection is becoming increasingly important in the field of computer vision due to its applications in driver assistance, surveillance, and monitoring. In this paper, we propose a brightness aware model for pedestrian detection using deep learning. A novel brightness aware mechanism depicts various illumination conditions, so as to enable prediction of day/ night scenario. Based on the detection of the brightness aware mechanism, a color or thermal model is used to detect pedestrians under day or night conditions respectively. The proposed method trained on FLIR-ADAS Thermal dataset and PASCAL VOC Color dataset, has achieved a mAP of ‘81.27%’, which outperforms the current state of the art.","PeriodicalId":194369,"journal":{"name":"2019 International Conference on Communication and Signal Processing (ICCSP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Deep Learning based Pedestrian Detection at all Light Conditions\",\"authors\":\"Koti Naga Renu Chebrolu, P. Kumar\",\"doi\":\"10.1109/ICCSP.2019.8698101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multispectral pedestrian detection is becoming increasingly important in the field of computer vision due to its applications in driver assistance, surveillance, and monitoring. In this paper, we propose a brightness aware model for pedestrian detection using deep learning. A novel brightness aware mechanism depicts various illumination conditions, so as to enable prediction of day/ night scenario. Based on the detection of the brightness aware mechanism, a color or thermal model is used to detect pedestrians under day or night conditions respectively. The proposed method trained on FLIR-ADAS Thermal dataset and PASCAL VOC Color dataset, has achieved a mAP of ‘81.27%’, which outperforms the current state of the art.\",\"PeriodicalId\":194369,\"journal\":{\"name\":\"2019 International Conference on Communication and Signal Processing (ICCSP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Communication and Signal Processing (ICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP.2019.8698101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Communication and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2019.8698101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

多光谱行人检测由于在驾驶辅助、监视和监控等方面的应用,在计算机视觉领域中变得越来越重要。在本文中,我们提出了一种基于深度学习的亮度感知行人检测模型。一种新颖的亮度感知机制描述了不同的照明条件,从而实现了昼夜场景的预测。在亮度感知检测机制的基础上,采用颜色模型和热模型分别对白天和夜间的行人进行检测。该方法在fliri - adas热数据集和PASCAL VOC颜色数据集上进行了训练,获得了81.27%的mAP,优于目前的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning based Pedestrian Detection at all Light Conditions
Multispectral pedestrian detection is becoming increasingly important in the field of computer vision due to its applications in driver assistance, surveillance, and monitoring. In this paper, we propose a brightness aware model for pedestrian detection using deep learning. A novel brightness aware mechanism depicts various illumination conditions, so as to enable prediction of day/ night scenario. Based on the detection of the brightness aware mechanism, a color or thermal model is used to detect pedestrians under day or night conditions respectively. The proposed method trained on FLIR-ADAS Thermal dataset and PASCAL VOC Color dataset, has achieved a mAP of ‘81.27%’, which outperforms the current state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信