{"title":"矩阵稳定性的充分条件","authors":"Charles R. Johnson","doi":"10.6028/JRES.078B.015","DOIUrl":null,"url":null,"abstract":"An n by n complex matri x A is said to be pos itive stable if Re (A) > 0 for each e igenvalue A of A. If A sati sfies both of the followin g two conditions, the n A is positive stable: (1) for each k = 1, .. . , n , the real part of the sum of the k by k princ ipal minors of A is positive ; and (2) the minimum of the rea l parts of the e igenvalues of A is it se lf an eigenvalue of A. Special cases inc lude hermiti a n positive d e fi nite matrices and M-matrices.","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1974-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A sufficient condition for matrix stability\",\"authors\":\"Charles R. Johnson\",\"doi\":\"10.6028/JRES.078B.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An n by n complex matri x A is said to be pos itive stable if Re (A) > 0 for each e igenvalue A of A. If A sati sfies both of the followin g two conditions, the n A is positive stable: (1) for each k = 1, .. . , n , the real part of the sum of the k by k princ ipal minors of A is positive ; and (2) the minimum of the rea l parts of the e igenvalues of A is it se lf an eigenvalue of A. Special cases inc lude hermiti a n positive d e fi nite matrices and M-matrices.\",\"PeriodicalId\":166823,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1974-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.078B.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.078B.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
一个n × n的复矩阵x A是正稳定的,如果对于A的每一个e值A, Re (A) > 0。如果A同时满足以下两个条件,则n A是正稳定的:(1)对于每一个k = 1,…。, n, A的k × k的和的实部是正的;(2) A的特征值的所有部分的最小值是A的特征值的最小值。特殊情况包括hermiti A和正有限矩阵和m -矩阵。
An n by n complex matri x A is said to be pos itive stable if Re (A) > 0 for each e igenvalue A of A. If A sati sfies both of the followin g two conditions, the n A is positive stable: (1) for each k = 1, .. . , n , the real part of the sum of the k by k princ ipal minors of A is positive ; and (2) the minimum of the rea l parts of the e igenvalues of A is it se lf an eigenvalue of A. Special cases inc lude hermiti a n positive d e fi nite matrices and M-matrices.