R. Forke, K. Hiller, S. Hahn, S. Weidlich, S. Konietzka, T. Motl, Alexander Praedicow, T. Otto
{"title":"工业应用低功耗高带宽加速度传感器","authors":"R. Forke, K. Hiller, S. Hahn, S. Weidlich, S. Konietzka, T. Motl, Alexander Praedicow, T. Otto","doi":"10.1109/ISISS.2019.8739510","DOIUrl":null,"url":null,"abstract":"This paper reports on the improved micromechanical structures and improved integrated electronics to create high bandwidth acceleration sensors with a high signal to noise ratio and very low power electronics. This ambitious aim can be achieved by a very close co-design of MEMS and ASIC. Our two axis micromechanical element is optimized with respect to its seismic mass, which is needed to have an ultra-low noise sensor. Therefore, a large height of the micro mechanical structure is preferred. Another aim is a very high capacitive sensitivity while keeping the base capacitance as small as possible to aim for a small power consumption. Hence, a high aspect ratio technology is essential.","PeriodicalId":162724,"journal":{"name":"2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Power High Bandwidth Acceleration Sensor For Industrial Applications\",\"authors\":\"R. Forke, K. Hiller, S. Hahn, S. Weidlich, S. Konietzka, T. Motl, Alexander Praedicow, T. Otto\",\"doi\":\"10.1109/ISISS.2019.8739510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the improved micromechanical structures and improved integrated electronics to create high bandwidth acceleration sensors with a high signal to noise ratio and very low power electronics. This ambitious aim can be achieved by a very close co-design of MEMS and ASIC. Our two axis micromechanical element is optimized with respect to its seismic mass, which is needed to have an ultra-low noise sensor. Therefore, a large height of the micro mechanical structure is preferred. Another aim is a very high capacitive sensitivity while keeping the base capacitance as small as possible to aim for a small power consumption. Hence, a high aspect ratio technology is essential.\",\"PeriodicalId\":162724,\"journal\":{\"name\":\"2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)\",\"volume\":\"169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISISS.2019.8739510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISISS.2019.8739510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low Power High Bandwidth Acceleration Sensor For Industrial Applications
This paper reports on the improved micromechanical structures and improved integrated electronics to create high bandwidth acceleration sensors with a high signal to noise ratio and very low power electronics. This ambitious aim can be achieved by a very close co-design of MEMS and ASIC. Our two axis micromechanical element is optimized with respect to its seismic mass, which is needed to have an ultra-low noise sensor. Therefore, a large height of the micro mechanical structure is preferred. Another aim is a very high capacitive sensitivity while keeping the base capacitance as small as possible to aim for a small power consumption. Hence, a high aspect ratio technology is essential.