{"title":"用于单相应用的3型锁相环","authors":"Abdullahi Bamigbade, V. Khadkikar, M. A. Hosani","doi":"10.1109/IAS.2019.8911942","DOIUrl":null,"url":null,"abstract":"Different structures of single-phase PLL have been widely developed for the synchronization of single-phase grid-connected power electronic-based equipments. These PLLs mostly employ proportional-integral (PI) controller as loop filter, thereby resulting in a type-2 control system. Hence, they are able to achieve zero steady-state phase error following step changes in frequency and phase of a single-phase input signal. However, when the input signal varies continuously over time in a linear manner, these PLLs exhibit a finite steady-state phase error. Thus, they may not be suitable for applications that require accurate estimation of phase angle when a ramp change in frequency occurs. To overcome this problem without compromising the benefits of type-2 PLLs, a type-3 PLL for single-phase applications is developed in this paper. Through experimental validation and comparison with an advanced single-phase type-2 PLL, the effectiveness of developed type-3 PLL is demonstrated.","PeriodicalId":376719,"journal":{"name":"2019 IEEE Industry Applications Society Annual Meeting","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Type-3 PLL for Single-Phase Applications\",\"authors\":\"Abdullahi Bamigbade, V. Khadkikar, M. A. Hosani\",\"doi\":\"10.1109/IAS.2019.8911942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different structures of single-phase PLL have been widely developed for the synchronization of single-phase grid-connected power electronic-based equipments. These PLLs mostly employ proportional-integral (PI) controller as loop filter, thereby resulting in a type-2 control system. Hence, they are able to achieve zero steady-state phase error following step changes in frequency and phase of a single-phase input signal. However, when the input signal varies continuously over time in a linear manner, these PLLs exhibit a finite steady-state phase error. Thus, they may not be suitable for applications that require accurate estimation of phase angle when a ramp change in frequency occurs. To overcome this problem without compromising the benefits of type-2 PLLs, a type-3 PLL for single-phase applications is developed in this paper. Through experimental validation and comparison with an advanced single-phase type-2 PLL, the effectiveness of developed type-3 PLL is demonstrated.\",\"PeriodicalId\":376719,\"journal\":{\"name\":\"2019 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2019.8911942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2019.8911942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Different structures of single-phase PLL have been widely developed for the synchronization of single-phase grid-connected power electronic-based equipments. These PLLs mostly employ proportional-integral (PI) controller as loop filter, thereby resulting in a type-2 control system. Hence, they are able to achieve zero steady-state phase error following step changes in frequency and phase of a single-phase input signal. However, when the input signal varies continuously over time in a linear manner, these PLLs exhibit a finite steady-state phase error. Thus, they may not be suitable for applications that require accurate estimation of phase angle when a ramp change in frequency occurs. To overcome this problem without compromising the benefits of type-2 PLLs, a type-3 PLL for single-phase applications is developed in this paper. Through experimental validation and comparison with an advanced single-phase type-2 PLL, the effectiveness of developed type-3 PLL is demonstrated.