不完全估计系统延迟的改进泄漏延迟LMS算法

Juan R. V. Lopez, O. J. Tobias, R. Seara
{"title":"不完全估计系统延迟的改进泄漏延迟LMS算法","authors":"Juan R. V. Lopez, O. J. Tobias, R. Seara","doi":"10.5281/ZENODO.40279","DOIUrl":null,"url":null,"abstract":"This paper proposes a modified leaky delayed least-mean-square (MLDLMS) algorithm, aiming to circumvent algorithm instability problems under imperfect system delay estimates. In addition, a model for the first and second moments of the algorithm is proposed. Such a model is obtained without invoking the independence theory and considering a slow adaptation condition. Numerical simulations corroborate the very good agreement between the results obtained with the Monte Carlo method and those from the proposed model for colored Gaussian inputs.","PeriodicalId":176384,"journal":{"name":"2007 15th European Signal Processing Conference","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modified leaky delayed LMS algorithm for imperfect estimate system delay\",\"authors\":\"Juan R. V. Lopez, O. J. Tobias, R. Seara\",\"doi\":\"10.5281/ZENODO.40279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a modified leaky delayed least-mean-square (MLDLMS) algorithm, aiming to circumvent algorithm instability problems under imperfect system delay estimates. In addition, a model for the first and second moments of the algorithm is proposed. Such a model is obtained without invoking the independence theory and considering a slow adaptation condition. Numerical simulations corroborate the very good agreement between the results obtained with the Monte Carlo method and those from the proposed model for colored Gaussian inputs.\",\"PeriodicalId\":176384,\"journal\":{\"name\":\"2007 15th European Signal Processing Conference\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 15th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.40279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 15th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.40279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种改进的泄漏延迟最小均方(MLDLMS)算法,旨在克服不完全系统延迟估计下的算法不稳定性问题。此外,还提出了算法一阶矩和二阶矩的模型。该模型在不引用独立性理论和考虑慢适应条件的情况下得到。数值模拟证实了用蒙特卡罗方法得到的结果与所提出的彩色高斯输入模型的结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified leaky delayed LMS algorithm for imperfect estimate system delay
This paper proposes a modified leaky delayed least-mean-square (MLDLMS) algorithm, aiming to circumvent algorithm instability problems under imperfect system delay estimates. In addition, a model for the first and second moments of the algorithm is proposed. Such a model is obtained without invoking the independence theory and considering a slow adaptation condition. Numerical simulations corroborate the very good agreement between the results obtained with the Monte Carlo method and those from the proposed model for colored Gaussian inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信