具有增量学习能力的神经网络人脸识别系统

Y. A. Ghassabeh, H. Moghaddam
{"title":"具有增量学习能力的神经网络人脸识别系统","authors":"Y. A. Ghassabeh, H. Moghaddam","doi":"10.1109/CIRA.2007.382904","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new incremental face recognition (IFR) system based on new adaptive learning algorithms and networks. We introduce new adaptive linear discriminant analysis (LDA) algorithm and related network for optimal facial feature extraction and use them to construct a new IFR system. Convergence proof of all algorithms is given using an appropriate cost function and discussing about its initial conditions. Application of the new IFR on feature extraction from facial image sequences is given in two steps: i) image preprocessing, which includes normalization, histogram equalization, mean centering and background removal, ii) adaptive LDA feature estimation. In the preprocessing stage, all input images are cropped and prepared for the next step. Outputs of the preprocessing stage are used as a sequence of inputs for IFR system. The proposed system was tested on YALE face database. Experimental results on this database demonstrated the effectiveness of the proposed system for adaptive estimation of the feature space for online face recognition.","PeriodicalId":301626,"journal":{"name":"2007 International Symposium on Computational Intelligence in Robotics and Automation","volume":"31 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Face Recognition System using Neural Networks with Incremental Learning Ability\",\"authors\":\"Y. A. Ghassabeh, H. Moghaddam\",\"doi\":\"10.1109/CIRA.2007.382904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new incremental face recognition (IFR) system based on new adaptive learning algorithms and networks. We introduce new adaptive linear discriminant analysis (LDA) algorithm and related network for optimal facial feature extraction and use them to construct a new IFR system. Convergence proof of all algorithms is given using an appropriate cost function and discussing about its initial conditions. Application of the new IFR on feature extraction from facial image sequences is given in two steps: i) image preprocessing, which includes normalization, histogram equalization, mean centering and background removal, ii) adaptive LDA feature estimation. In the preprocessing stage, all input images are cropped and prepared for the next step. Outputs of the preprocessing stage are used as a sequence of inputs for IFR system. The proposed system was tested on YALE face database. Experimental results on this database demonstrated the effectiveness of the proposed system for adaptive estimation of the feature space for online face recognition.\",\"PeriodicalId\":301626,\"journal\":{\"name\":\"2007 International Symposium on Computational Intelligence in Robotics and Automation\",\"volume\":\"31 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Computational Intelligence in Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRA.2007.382904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2007.382904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的基于自适应学习算法和网络的增量式人脸识别系统。提出了一种新的自适应线性判别分析(LDA)算法和相关网络,用于最优的人脸特征提取,并利用它们构建了一个新的IFR系统。利用合适的代价函数给出了所有算法的收敛性证明,并讨论了其初始条件。该方法在人脸图像序列特征提取中的应用分为两个步骤:1)图像预处理,包括归一化、直方图均衡化、均值定心和背景去除;2)自适应LDA特征估计。在预处理阶段,所有输入的图像被裁剪并为下一步做准备。预处理阶段的输出用作IFR系统的输入序列。在耶鲁大学人脸数据库上对该系统进行了测试。在该数据库上的实验结果证明了该系统对在线人脸识别特征空间的自适应估计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Face Recognition System using Neural Networks with Incremental Learning Ability
In this paper, we present a new incremental face recognition (IFR) system based on new adaptive learning algorithms and networks. We introduce new adaptive linear discriminant analysis (LDA) algorithm and related network for optimal facial feature extraction and use them to construct a new IFR system. Convergence proof of all algorithms is given using an appropriate cost function and discussing about its initial conditions. Application of the new IFR on feature extraction from facial image sequences is given in two steps: i) image preprocessing, which includes normalization, histogram equalization, mean centering and background removal, ii) adaptive LDA feature estimation. In the preprocessing stage, all input images are cropped and prepared for the next step. Outputs of the preprocessing stage are used as a sequence of inputs for IFR system. The proposed system was tested on YALE face database. Experimental results on this database demonstrated the effectiveness of the proposed system for adaptive estimation of the feature space for online face recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信