基于图像分割改进的无线胶囊内镜图像息肉自动检测方法

Yiqun Jia
{"title":"基于图像分割改进的无线胶囊内镜图像息肉自动检测方法","authors":"Yiqun Jia","doi":"10.1109/ROBIO.2015.7419005","DOIUrl":null,"url":null,"abstract":"Wireless Capsule Endoscopy (WCE) is a noninvasive instrument that widely used in screening the whole intestine and it has been utilized as a model especially for the examination of gastrointestinal (GI) diseases. However, it is numerous images of the detecting result produced by WCE that always burdens the physicians. To solve this problem, it is necessary to combine the manual diagnosis with the image segmentation technology. In this paper we proposed a feasible method by using K-means clustering and localizing region-based active contour segmentation for polyps auto-detection in WCE images. Experimental results shows the method is promising and efficient.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Polyps auto-detection in Wireless Capsule Endoscopy images using improved method based on image segmentation\",\"authors\":\"Yiqun Jia\",\"doi\":\"10.1109/ROBIO.2015.7419005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Capsule Endoscopy (WCE) is a noninvasive instrument that widely used in screening the whole intestine and it has been utilized as a model especially for the examination of gastrointestinal (GI) diseases. However, it is numerous images of the detecting result produced by WCE that always burdens the physicians. To solve this problem, it is necessary to combine the manual diagnosis with the image segmentation technology. In this paper we proposed a feasible method by using K-means clustering and localizing region-based active contour segmentation for polyps auto-detection in WCE images. Experimental results shows the method is promising and efficient.\",\"PeriodicalId\":325536,\"journal\":{\"name\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2015.7419005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7419005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

无线胶囊内镜(Wireless Capsule Endoscopy, WCE)是一种广泛应用于全肠筛查的无创仪器,已成为一种特别适用于胃肠道疾病检查的模型。然而,WCE检测结果的大量图像总是给医生带来负担。为了解决这一问题,需要将人工诊断与图像分割技术相结合。本文提出了一种可行的基于k均值聚类和局部区域主动轮廓分割的WCE图像息肉自动检测方法。实验结果表明,该方法是有效可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polyps auto-detection in Wireless Capsule Endoscopy images using improved method based on image segmentation
Wireless Capsule Endoscopy (WCE) is a noninvasive instrument that widely used in screening the whole intestine and it has been utilized as a model especially for the examination of gastrointestinal (GI) diseases. However, it is numerous images of the detecting result produced by WCE that always burdens the physicians. To solve this problem, it is necessary to combine the manual diagnosis with the image segmentation technology. In this paper we proposed a feasible method by using K-means clustering and localizing region-based active contour segmentation for polyps auto-detection in WCE images. Experimental results shows the method is promising and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信