带隙弹性双质量系统的外力学参数辨识

Can Wang, Ming Yang, Weilong Zheng, Q. Ni, R. Kennel, Dianguo Xu
{"title":"带隙弹性双质量系统的外力学参数辨识","authors":"Can Wang, Ming Yang, Weilong Zheng, Q. Ni, R. Kennel, Dianguo Xu","doi":"10.1109/PEDS.2017.8289174","DOIUrl":null,"url":null,"abstract":"AC servo system will encounter outside disturbances and changes of system parameters when it operates. In order to obtain real-time information of the system and complete self-tuning of the controller parameters, online identification method of mechanical parameters is analyzed in the two-mass system with backlash. Firstly, the identification model and implementation process under no-load and loading conditions are studied. On the basis of that, recursive least squares forgetting factor (FFRLS) method is used to identify multiple parameters simultaneously. The effect of load torque and inertia ratio upon the identification precision is analyzed. For the case of no-load and low inertia-ratio, a shaft torque compensator is combined for backlash compensation, further improving the identification precision. Simulation results show that the linear identification method can be effective in the elastic-backlash nonlinear system under any loading or inertia ratio conditions.","PeriodicalId":411916,"journal":{"name":"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"External mechanical parameters identification of the elastic two-mass system with backlash\",\"authors\":\"Can Wang, Ming Yang, Weilong Zheng, Q. Ni, R. Kennel, Dianguo Xu\",\"doi\":\"10.1109/PEDS.2017.8289174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AC servo system will encounter outside disturbances and changes of system parameters when it operates. In order to obtain real-time information of the system and complete self-tuning of the controller parameters, online identification method of mechanical parameters is analyzed in the two-mass system with backlash. Firstly, the identification model and implementation process under no-load and loading conditions are studied. On the basis of that, recursive least squares forgetting factor (FFRLS) method is used to identify multiple parameters simultaneously. The effect of load torque and inertia ratio upon the identification precision is analyzed. For the case of no-load and low inertia-ratio, a shaft torque compensator is combined for backlash compensation, further improving the identification precision. Simulation results show that the linear identification method can be effective in the elastic-backlash nonlinear system under any loading or inertia ratio conditions.\",\"PeriodicalId\":411916,\"journal\":{\"name\":\"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDS.2017.8289174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDS.2017.8289174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

交流伺服系统在运行过程中会遇到外界的干扰和系统参数的变化。为了获得系统的实时信息和完成控制器参数的自整定,分析了带间隙的双质量系统的机械参数在线辨识方法。首先,研究了空载和有载工况下的辨识模型和实现过程。在此基础上,采用递推最小二乘遗忘因子(FFRLS)方法同时辨识多个参数。分析了负载转矩和惯量比对识别精度的影响。在空载低惯量比情况下,结合轴转矩补偿器进行间隙补偿,进一步提高了识别精度。仿真结果表明,该方法可以有效地识别任意载荷和惯性比条件下的弹隙非线性系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
External mechanical parameters identification of the elastic two-mass system with backlash
AC servo system will encounter outside disturbances and changes of system parameters when it operates. In order to obtain real-time information of the system and complete self-tuning of the controller parameters, online identification method of mechanical parameters is analyzed in the two-mass system with backlash. Firstly, the identification model and implementation process under no-load and loading conditions are studied. On the basis of that, recursive least squares forgetting factor (FFRLS) method is used to identify multiple parameters simultaneously. The effect of load torque and inertia ratio upon the identification precision is analyzed. For the case of no-load and low inertia-ratio, a shaft torque compensator is combined for backlash compensation, further improving the identification precision. Simulation results show that the linear identification method can be effective in the elastic-backlash nonlinear system under any loading or inertia ratio conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信