毫米波- noma系统的分层用户聚类

Dileepa Marasinghe, Nalin Jayaweera, Nandana Rajatheva, M. Latva-aho
{"title":"毫米波- noma系统的分层用户聚类","authors":"Dileepa Marasinghe, Nalin Jayaweera, Nandana Rajatheva, M. Latva-aho","doi":"10.1109/6GSUMMIT49458.2020.9083909","DOIUrl":null,"url":null,"abstract":"Non-orthogonal multiple access (NOMA) and mmWave are two complementary technologies that can support the capacity demand that arises in 5G and beyond networks. The increasing number of users are served simultaneously while providing a solution for the scarcity of the bandwidth. In this paper we present a method for clustering the users in a mmWave-NOMA system with the objective of maximizing the sum-rate. An unsupervised machine learning technique, namely, hierarchical clustering is utilized which does the automatic identification of the optimal number of clusters. The simulations prove that the proposed method can maximize the sum-rate of the system while satisfying the minimum QoS for all users without the need of the number of clusters as a prerequisite when compared to other clustering methods such as k-means clustering.","PeriodicalId":385212,"journal":{"name":"2020 2nd 6G Wireless Summit (6G SUMMIT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Hierarchical User Clustering for mmWave-NOMA Systems\",\"authors\":\"Dileepa Marasinghe, Nalin Jayaweera, Nandana Rajatheva, M. Latva-aho\",\"doi\":\"10.1109/6GSUMMIT49458.2020.9083909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-orthogonal multiple access (NOMA) and mmWave are two complementary technologies that can support the capacity demand that arises in 5G and beyond networks. The increasing number of users are served simultaneously while providing a solution for the scarcity of the bandwidth. In this paper we present a method for clustering the users in a mmWave-NOMA system with the objective of maximizing the sum-rate. An unsupervised machine learning technique, namely, hierarchical clustering is utilized which does the automatic identification of the optimal number of clusters. The simulations prove that the proposed method can maximize the sum-rate of the system while satisfying the minimum QoS for all users without the need of the number of clusters as a prerequisite when compared to other clustering methods such as k-means clustering.\",\"PeriodicalId\":385212,\"journal\":{\"name\":\"2020 2nd 6G Wireless Summit (6G SUMMIT)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd 6G Wireless Summit (6G SUMMIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/6GSUMMIT49458.2020.9083909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd 6G Wireless Summit (6G SUMMIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/6GSUMMIT49458.2020.9083909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

非正交多址(NOMA)和毫米波是两种互补技术,可以支持5G及以后网络中出现的容量需求。同时为越来越多的用户提供服务的同时,也为带宽的短缺提供了解决方案。在本文中,我们提出了一种在毫米波- noma系统中以最大化和速率为目标的用户聚类方法。利用无监督机器学习技术,即分层聚类,自动识别最优聚类数量。仿真结果表明,与其他聚类方法(如k-means聚类)相比,该方法可以在不以簇数为前提的情况下,最大限度地提高系统的和速率,同时满足所有用户的最小QoS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical User Clustering for mmWave-NOMA Systems
Non-orthogonal multiple access (NOMA) and mmWave are two complementary technologies that can support the capacity demand that arises in 5G and beyond networks. The increasing number of users are served simultaneously while providing a solution for the scarcity of the bandwidth. In this paper we present a method for clustering the users in a mmWave-NOMA system with the objective of maximizing the sum-rate. An unsupervised machine learning technique, namely, hierarchical clustering is utilized which does the automatic identification of the optimal number of clusters. The simulations prove that the proposed method can maximize the sum-rate of the system while satisfying the minimum QoS for all users without the need of the number of clusters as a prerequisite when compared to other clustering methods such as k-means clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信