一种非侵入式磁力自供电振动传感器,用于机电机械的自动状态监测

Jinyeong Moon, Peter A. Lindahl, J. Donnal, S. Leeb, Ryan Zachar, William Cotta, C. Schantz
{"title":"一种非侵入式磁力自供电振动传感器,用于机电机械的自动状态监测","authors":"Jinyeong Moon, Peter A. Lindahl, J. Donnal, S. Leeb, Ryan Zachar, William Cotta, C. Schantz","doi":"10.1109/AUTEST.2016.7589635","DOIUrl":null,"url":null,"abstract":"This paper presents a nonintrusive and electromagnetically self-powered embedded system with vibration sensor for condition monitoring of electromechanical machinery. This system can be installed inside the terminal block of a motor or generator and supports wireless communication for transferring data to a mobile device or computer for subsequent performance analysis. As an initial application, the sensor package is configured for automated condition monitoring of resiliently mounted machines. Upon detecting a spin-down event, e.g. a motor turnoff, the system collects and transmits vibration and residual backemf data as the rotor decreases in rotational speed. This data is then processed to generate an empirical vibrational transfer function (eVTF) rich in condition information for detecting and differentiating machinery and vibrational mount pathologies. The utility of this system is demonstrated via lab-based tests of a resiliently mounted 1.1 kW three-phase induction motor, with results showcasing the usefulness of the embedded system for condition monitoring.","PeriodicalId":314357,"journal":{"name":"2016 IEEE AUTOTESTCON","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A nonintrusive magnetically self-powered vibration sensor for automated condition monitoring of electromechanical machines\",\"authors\":\"Jinyeong Moon, Peter A. Lindahl, J. Donnal, S. Leeb, Ryan Zachar, William Cotta, C. Schantz\",\"doi\":\"10.1109/AUTEST.2016.7589635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a nonintrusive and electromagnetically self-powered embedded system with vibration sensor for condition monitoring of electromechanical machinery. This system can be installed inside the terminal block of a motor or generator and supports wireless communication for transferring data to a mobile device or computer for subsequent performance analysis. As an initial application, the sensor package is configured for automated condition monitoring of resiliently mounted machines. Upon detecting a spin-down event, e.g. a motor turnoff, the system collects and transmits vibration and residual backemf data as the rotor decreases in rotational speed. This data is then processed to generate an empirical vibrational transfer function (eVTF) rich in condition information for detecting and differentiating machinery and vibrational mount pathologies. The utility of this system is demonstrated via lab-based tests of a resiliently mounted 1.1 kW three-phase induction motor, with results showcasing the usefulness of the embedded system for condition monitoring.\",\"PeriodicalId\":314357,\"journal\":{\"name\":\"2016 IEEE AUTOTESTCON\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE AUTOTESTCON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUTEST.2016.7589635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTEST.2016.7589635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种用于机电机械状态监测的非侵入式电磁自供电嵌入式振动传感器系统。该系统可安装在电机或发电机的终端块内,并支持无线通信,将数据传输到移动设备或计算机,以进行后续性能分析。作为初始应用,该传感器包配置用于弹性安装机器的自动状态监测。在检测到自旋下降事件(例如电机关闭)后,系统收集并传输转子转速降低时的振动和残余反电动势数据。然后对这些数据进行处理,生成丰富的状态信息的经验振动传递函数(eVTF),用于检测和区分机械和振动支架的病理。该系统的实用性通过对弹性安装的1.1 kW三相感应电机的实验室测试得到了验证,结果显示了嵌入式系统在状态监测方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nonintrusive magnetically self-powered vibration sensor for automated condition monitoring of electromechanical machines
This paper presents a nonintrusive and electromagnetically self-powered embedded system with vibration sensor for condition monitoring of electromechanical machinery. This system can be installed inside the terminal block of a motor or generator and supports wireless communication for transferring data to a mobile device or computer for subsequent performance analysis. As an initial application, the sensor package is configured for automated condition monitoring of resiliently mounted machines. Upon detecting a spin-down event, e.g. a motor turnoff, the system collects and transmits vibration and residual backemf data as the rotor decreases in rotational speed. This data is then processed to generate an empirical vibrational transfer function (eVTF) rich in condition information for detecting and differentiating machinery and vibrational mount pathologies. The utility of this system is demonstrated via lab-based tests of a resiliently mounted 1.1 kW three-phase induction motor, with results showcasing the usefulness of the embedded system for condition monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信