Zeng Wan-dan, Shi Ru-jin, Wu Cheng-wei, Li Qian-xue, Xia Zhi-ping
{"title":"基于pca叠加模型的食源性致病菌拉曼光谱分类","authors":"Zeng Wan-dan, Shi Ru-jin, Wu Cheng-wei, Li Qian-xue, Xia Zhi-ping","doi":"10.1109/ICIIBMS46890.2019.8991526","DOIUrl":null,"url":null,"abstract":"The rapid identification of foodborne pathogenic bacteria is an important task. Compared with traditional detection methods, Raman spectroscopy is a non-destructive testing method and it can reduce the identification time. In order to improve the accuracy and efficiency of Raman spectra identification of Escherichia coil O157:H7 and Brucellasuis vaccine strain 2, this paper proposes a classification model that based on principal component analysis and Stacking algorithm. Grid search and K-fold cross validation are used to improve the robustness of the model. Compared with other models such as K Nearest Neighbor, and Support Vector Machine, the experimental results show that the Stacking algorithm as an ensemble algorithm has the highest accuracy rate of 95.73%, which has achieved the expected results.","PeriodicalId":444797,"journal":{"name":"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Raman Spectroscopy Classification of Foodborne Pathogenic Bacteria Based on PCA-Stacking Model\",\"authors\":\"Zeng Wan-dan, Shi Ru-jin, Wu Cheng-wei, Li Qian-xue, Xia Zhi-ping\",\"doi\":\"10.1109/ICIIBMS46890.2019.8991526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid identification of foodborne pathogenic bacteria is an important task. Compared with traditional detection methods, Raman spectroscopy is a non-destructive testing method and it can reduce the identification time. In order to improve the accuracy and efficiency of Raman spectra identification of Escherichia coil O157:H7 and Brucellasuis vaccine strain 2, this paper proposes a classification model that based on principal component analysis and Stacking algorithm. Grid search and K-fold cross validation are used to improve the robustness of the model. Compared with other models such as K Nearest Neighbor, and Support Vector Machine, the experimental results show that the Stacking algorithm as an ensemble algorithm has the highest accuracy rate of 95.73%, which has achieved the expected results.\",\"PeriodicalId\":444797,\"journal\":{\"name\":\"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIBMS46890.2019.8991526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS46890.2019.8991526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Raman Spectroscopy Classification of Foodborne Pathogenic Bacteria Based on PCA-Stacking Model
The rapid identification of foodborne pathogenic bacteria is an important task. Compared with traditional detection methods, Raman spectroscopy is a non-destructive testing method and it can reduce the identification time. In order to improve the accuracy and efficiency of Raman spectra identification of Escherichia coil O157:H7 and Brucellasuis vaccine strain 2, this paper proposes a classification model that based on principal component analysis and Stacking algorithm. Grid search and K-fold cross validation are used to improve the robustness of the model. Compared with other models such as K Nearest Neighbor, and Support Vector Machine, the experimental results show that the Stacking algorithm as an ensemble algorithm has the highest accuracy rate of 95.73%, which has achieved the expected results.