{"title":"无速度测量的BDC-RLED机器人自适应位置/力控制","authors":"M. Queiroz, D. Dawson, H. Canbolat","doi":"10.1109/ROBOT.1997.620090","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of controlling the position and force of a constrained rigid-link electrically-driven robot manipulator actuated by brushed DC motors (BDC-RLED robot). Based on inexact knowledge of almost all of the system parameters and the lack of link velocity measurements, the integrator backstepping approach is used to design a voltage-level, adaptive position/force controller which ensures semi-global asymptotic tracking for the end-effector position, velocity, and force.","PeriodicalId":225473,"journal":{"name":"Proceedings of International Conference on Robotics and Automation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Adaptive position/force control of BDC-RLED robots without velocity measurements\",\"authors\":\"M. Queiroz, D. Dawson, H. Canbolat\",\"doi\":\"10.1109/ROBOT.1997.620090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of controlling the position and force of a constrained rigid-link electrically-driven robot manipulator actuated by brushed DC motors (BDC-RLED robot). Based on inexact knowledge of almost all of the system parameters and the lack of link velocity measurements, the integrator backstepping approach is used to design a voltage-level, adaptive position/force controller which ensures semi-global asymptotic tracking for the end-effector position, velocity, and force.\",\"PeriodicalId\":225473,\"journal\":{\"name\":\"Proceedings of International Conference on Robotics and Automation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1997.620090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1997.620090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive position/force control of BDC-RLED robots without velocity measurements
This paper considers the problem of controlling the position and force of a constrained rigid-link electrically-driven robot manipulator actuated by brushed DC motors (BDC-RLED robot). Based on inexact knowledge of almost all of the system parameters and the lack of link velocity measurements, the integrator backstepping approach is used to design a voltage-level, adaptive position/force controller which ensures semi-global asymptotic tracking for the end-effector position, velocity, and force.