DANNA:用于非结构化稀疏的维度感知神经网络加速器

Xinyu Liu, Haigang Feng
{"title":"DANNA:用于非结构化稀疏的维度感知神经网络加速器","authors":"Xinyu Liu, Haigang Feng","doi":"10.1109/CISCE58541.2023.10142599","DOIUrl":null,"url":null,"abstract":"With the development of technology in deep neural network (DNN) pruning, Neural Acceleration Processor can be designed to get more efficiency advantage by exploiting all sparsity in neural network. However, sparse data has irregular coordination, which result that the exist sparse designs have serious storage waste and high latency. In this work, we present a Dimension-Aware Neural Network Acceleration (DANNA) to optimize those problems. Specifically, DANNA employs novel Dimension-first dataflow and custom microarchitecture, which substantially reduce both memory amounts and memory access collision (hash collision). Furthermore, DANNA leverages a fixed channel-share-LUT based on channel reuse characteristics in convolution to replace the traditional tedious coordinator comparison, which saves consumption of logic.","PeriodicalId":145263,"journal":{"name":"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DANNA: A Dimension-Aware Neural Network Accelerator for Unstructured Sparsity\",\"authors\":\"Xinyu Liu, Haigang Feng\",\"doi\":\"10.1109/CISCE58541.2023.10142599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of technology in deep neural network (DNN) pruning, Neural Acceleration Processor can be designed to get more efficiency advantage by exploiting all sparsity in neural network. However, sparse data has irregular coordination, which result that the exist sparse designs have serious storage waste and high latency. In this work, we present a Dimension-Aware Neural Network Acceleration (DANNA) to optimize those problems. Specifically, DANNA employs novel Dimension-first dataflow and custom microarchitecture, which substantially reduce both memory amounts and memory access collision (hash collision). Furthermore, DANNA leverages a fixed channel-share-LUT based on channel reuse characteristics in convolution to replace the traditional tedious coordinator comparison, which saves consumption of logic.\",\"PeriodicalId\":145263,\"journal\":{\"name\":\"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISCE58541.2023.10142599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISCE58541.2023.10142599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着深度神经网络(DNN)剪枝技术的发展,利用神经网络的全稀疏性,可以设计神经加速处理器来获得更大的效率优势。然而,由于稀疏数据具有不规则的协调性,导致现有的稀疏设计存在严重的存储浪费和高延迟。在这项工作中,我们提出了一个维度感知神经网络加速(DANNA)来优化这些问题。具体来说,DANNA采用了新颖的维度优先数据流和自定义微架构,大大减少了内存数量和内存访问冲突(哈希冲突)。此外,DANNA利用基于卷积中的通道重用特性的固定通道共享lut来取代传统的繁琐的协调器比较,节省了逻辑消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DANNA: A Dimension-Aware Neural Network Accelerator for Unstructured Sparsity
With the development of technology in deep neural network (DNN) pruning, Neural Acceleration Processor can be designed to get more efficiency advantage by exploiting all sparsity in neural network. However, sparse data has irregular coordination, which result that the exist sparse designs have serious storage waste and high latency. In this work, we present a Dimension-Aware Neural Network Acceleration (DANNA) to optimize those problems. Specifically, DANNA employs novel Dimension-first dataflow and custom microarchitecture, which substantially reduce both memory amounts and memory access collision (hash collision). Furthermore, DANNA leverages a fixed channel-share-LUT based on channel reuse characteristics in convolution to replace the traditional tedious coordinator comparison, which saves consumption of logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信