植入方式对校准TCAD刀具速度和精度权衡的影响

M. A. Ismail
{"title":"植入方式对校准TCAD刀具速度和精度权衡的影响","authors":"M. A. Ismail","doi":"10.1109/SMELEC.2014.6920821","DOIUrl":null,"url":null,"abstract":"Analytical-based and Monte Carlo-based are two methods available in TCAD for simulation of ion implantation step. This paper presents a selection of suitable implantation methods considering the speed and accuracy trade-off while fulfilling the calibrated TCAD requirements in MOSFET process and device simulations. Doping profiles from several device physicals such as channel, halo and source-drain structures are acquired to capture the impact of different implantation methods. The comparisons between measured and simulated doping profiles are presented to further investigate the trade-off as a function of energy levels and tilt angles. The best solution is proposed to obtain essentially calibrated TCAD simulation, without unnecessarily scarifying the simulation time.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of implantation methods on speed and accuracy trade-off in calibrated TCAD tool\",\"authors\":\"M. A. Ismail\",\"doi\":\"10.1109/SMELEC.2014.6920821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analytical-based and Monte Carlo-based are two methods available in TCAD for simulation of ion implantation step. This paper presents a selection of suitable implantation methods considering the speed and accuracy trade-off while fulfilling the calibrated TCAD requirements in MOSFET process and device simulations. Doping profiles from several device physicals such as channel, halo and source-drain structures are acquired to capture the impact of different implantation methods. The comparisons between measured and simulated doping profiles are presented to further investigate the trade-off as a function of energy levels and tilt angles. The best solution is proposed to obtain essentially calibrated TCAD simulation, without unnecessarily scarifying the simulation time.\",\"PeriodicalId\":268203,\"journal\":{\"name\":\"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2014.6920821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2014.6920821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于解析法和蒙特卡罗法是TCAD中离子注入过程模拟的两种方法。在MOSFET工艺和器件仿真中,在满足校准TCAD要求的同时,考虑到速度和精度的权衡,选择了合适的植入方法。从通道、光晕和源漏结构等几种器件物理结构中获得掺杂概况,以捕获不同植入方法的影响。在测量和模拟的掺杂剖面之间进行了比较,以进一步研究作为能级和倾斜角函数的权衡。提出了在不增加仿真时间的前提下获得基本校准TCAD仿真的最佳解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of implantation methods on speed and accuracy trade-off in calibrated TCAD tool
Analytical-based and Monte Carlo-based are two methods available in TCAD for simulation of ion implantation step. This paper presents a selection of suitable implantation methods considering the speed and accuracy trade-off while fulfilling the calibrated TCAD requirements in MOSFET process and device simulations. Doping profiles from several device physicals such as channel, halo and source-drain structures are acquired to capture the impact of different implantation methods. The comparisons between measured and simulated doping profiles are presented to further investigate the trade-off as a function of energy levels and tilt angles. The best solution is proposed to obtain essentially calibrated TCAD simulation, without unnecessarily scarifying the simulation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信