Khalid Latif, A. Rahmani, T. Seceleanu, H. Tenhunen
{"title":"一种用于容错片上网络的低成本处理元件恢复机制","authors":"Khalid Latif, A. Rahmani, T. Seceleanu, H. Tenhunen","doi":"10.1109/NORCHP.2011.6126734","DOIUrl":null,"url":null,"abstract":"A fault in one component of Networks-on-Chip (NoC) based system makes the fault-free connected units out of use and this in turn leads to considerable performance degradation. Many fault tolerant architectures and routing algorithms have already been proposed for NoC but the utilization of resources, affected indirectly by faults is yet to be addressed. It is indispensable step needed to be taken in order to implement the reliable on-chip systems especially with nano-scale technologies. In this paper, we present a technique to recover healthy processing elements for NoC architectures in case of associated routers failure by using the Partial Virtual-Channel Sharing (PVS) approach. The proposed architecture divides the network into cluster regions, where each cluster comprises of two nodes. Each node in a cluster provides a backup data-path for other node in the cluster. Each processing element can use the backup data-path to transmit and receive the packets in case of corresponding router failure. The simulation results show that the proposed architecture has low hardware overheads.","PeriodicalId":108291,"journal":{"name":"2011 NORCHIP","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A low-cost processing element recovery mechanism for fault tolerant Networks-on-Chip\",\"authors\":\"Khalid Latif, A. Rahmani, T. Seceleanu, H. Tenhunen\",\"doi\":\"10.1109/NORCHP.2011.6126734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fault in one component of Networks-on-Chip (NoC) based system makes the fault-free connected units out of use and this in turn leads to considerable performance degradation. Many fault tolerant architectures and routing algorithms have already been proposed for NoC but the utilization of resources, affected indirectly by faults is yet to be addressed. It is indispensable step needed to be taken in order to implement the reliable on-chip systems especially with nano-scale technologies. In this paper, we present a technique to recover healthy processing elements for NoC architectures in case of associated routers failure by using the Partial Virtual-Channel Sharing (PVS) approach. The proposed architecture divides the network into cluster regions, where each cluster comprises of two nodes. Each node in a cluster provides a backup data-path for other node in the cluster. Each processing element can use the backup data-path to transmit and receive the packets in case of corresponding router failure. The simulation results show that the proposed architecture has low hardware overheads.\",\"PeriodicalId\":108291,\"journal\":{\"name\":\"2011 NORCHIP\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 NORCHIP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NORCHP.2011.6126734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 NORCHIP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORCHP.2011.6126734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low-cost processing element recovery mechanism for fault tolerant Networks-on-Chip
A fault in one component of Networks-on-Chip (NoC) based system makes the fault-free connected units out of use and this in turn leads to considerable performance degradation. Many fault tolerant architectures and routing algorithms have already been proposed for NoC but the utilization of resources, affected indirectly by faults is yet to be addressed. It is indispensable step needed to be taken in order to implement the reliable on-chip systems especially with nano-scale technologies. In this paper, we present a technique to recover healthy processing elements for NoC architectures in case of associated routers failure by using the Partial Virtual-Channel Sharing (PVS) approach. The proposed architecture divides the network into cluster regions, where each cluster comprises of two nodes. Each node in a cluster provides a backup data-path for other node in the cluster. Each processing element can use the backup data-path to transmit and receive the packets in case of corresponding router failure. The simulation results show that the proposed architecture has low hardware overheads.