非常步长凸极小化问题的最优算法

Pham Quy Muoi Pham
{"title":"非常步长凸极小化问题的最优算法","authors":"Pham Quy Muoi Pham","doi":"10.31130/ud-jst2021-012e","DOIUrl":null,"url":null,"abstract":"In [1], Nesterov has introduced an optimal algorithm with constant step-size,  with  is the Lipschitz constant of objective function. The algorithm is proved to converge with optimal rate . In this paper, we propose a new algorithm, which is allowed nonconstant step-sizes . We prove the convergence and convergence rate of the new algorithm. It is proved to have the convergence rate  as the original one. The advance of our algorithm is that it is allowed nonconstant step-sizes and give us more free choices of step-sizes, which convergence rate is still optimal. This is a generalization of Nesterov's algorithm. We have applied the new algorithm to solve the problem of finding an approximate solution to the integral equation.","PeriodicalId":262140,"journal":{"name":"Journal of Science and Technology Issue on Information and Communications Technology","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimal algorithm for convex minimization problems with nonconstant step-sizes\",\"authors\":\"Pham Quy Muoi Pham\",\"doi\":\"10.31130/ud-jst2021-012e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [1], Nesterov has introduced an optimal algorithm with constant step-size,  with  is the Lipschitz constant of objective function. The algorithm is proved to converge with optimal rate . In this paper, we propose a new algorithm, which is allowed nonconstant step-sizes . We prove the convergence and convergence rate of the new algorithm. It is proved to have the convergence rate  as the original one. The advance of our algorithm is that it is allowed nonconstant step-sizes and give us more free choices of step-sizes, which convergence rate is still optimal. This is a generalization of Nesterov's algorithm. We have applied the new algorithm to solve the problem of finding an approximate solution to the integral equation.\",\"PeriodicalId\":262140,\"journal\":{\"name\":\"Journal of Science and Technology Issue on Information and Communications Technology\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Technology Issue on Information and Communications Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31130/ud-jst2021-012e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology Issue on Information and Communications Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31130/ud-jst2021-012e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Nesterov在[1]中引入了一种步长为常数的最优算法,其中为目标函数的Lipschitz常数。证明了该算法具有最优收敛速度。在本文中,我们提出了一种新的算法,该算法允许非恒定步长。证明了新算法的收敛性和收敛速度。结果表明,该算法具有与原算法相同的收敛速度。该算法的改进之处在于允许非恒定步长,使我们可以更自由地选择步长,而步长的收敛速度仍然是最优的。这是涅斯特洛夫算法的推广。我们已经应用新算法解决了求积分方程近似解的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimal algorithm for convex minimization problems with nonconstant step-sizes
In [1], Nesterov has introduced an optimal algorithm with constant step-size,  with  is the Lipschitz constant of objective function. The algorithm is proved to converge with optimal rate . In this paper, we propose a new algorithm, which is allowed nonconstant step-sizes . We prove the convergence and convergence rate of the new algorithm. It is proved to have the convergence rate  as the original one. The advance of our algorithm is that it is allowed nonconstant step-sizes and give us more free choices of step-sizes, which convergence rate is still optimal. This is a generalization of Nesterov's algorithm. We have applied the new algorithm to solve the problem of finding an approximate solution to the integral equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信