{"title":"使用准粒子工程材料","authors":"G. Catelani, J. Pekola","doi":"10.1088/2633-4356/ac4a75","DOIUrl":null,"url":null,"abstract":"\n The fundamental excitations in superconductors – Bogoliubov quasiparticles – can be either a resource or a liability in superconducting devices: they are what enables photon detection in microwave kinetic inductance detectors, but they are a source of errors in qubits and electron pumps. To improve operation of the latter devices, ways to mitigate quasiparticle effects have been devised; in particular, combining different materials quasiparticles can be trapped where they do no harm and their generation can be impeded. We review recent developments in these mitigation efforts and discuss open questions.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Using materials for quasiparticle engineering\",\"authors\":\"G. Catelani, J. Pekola\",\"doi\":\"10.1088/2633-4356/ac4a75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The fundamental excitations in superconductors – Bogoliubov quasiparticles – can be either a resource or a liability in superconducting devices: they are what enables photon detection in microwave kinetic inductance detectors, but they are a source of errors in qubits and electron pumps. To improve operation of the latter devices, ways to mitigate quasiparticle effects have been devised; in particular, combining different materials quasiparticles can be trapped where they do no harm and their generation can be impeded. We review recent developments in these mitigation efforts and discuss open questions.\",\"PeriodicalId\":345750,\"journal\":{\"name\":\"Materials for Quantum Technology\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Quantum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-4356/ac4a75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/ac4a75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The fundamental excitations in superconductors – Bogoliubov quasiparticles – can be either a resource or a liability in superconducting devices: they are what enables photon detection in microwave kinetic inductance detectors, but they are a source of errors in qubits and electron pumps. To improve operation of the latter devices, ways to mitigate quasiparticle effects have been devised; in particular, combining different materials quasiparticles can be trapped where they do no harm and their generation can be impeded. We review recent developments in these mitigation efforts and discuss open questions.