基于RGB-D数据的切换观测模型三维视觉数据融合及其在人物跟踪中的应用

D. Kim, B. Vo, B. Vo
{"title":"基于RGB-D数据的切换观测模型三维视觉数据融合及其在人物跟踪中的应用","authors":"D. Kim, B. Vo, B. Vo","doi":"10.1109/ICCAIS.2013.6720536","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method for 3D people tracking with RGB-D observations. The proposed method fuses RGB and depth data via a switching observation model. Specifically, the proposed switching observation model intelligently exploits both final detection results and raw signal intensity in a complementary manner in order to cope with missing detections. In real-world applications, the detector response to RGB data is frequently missing. When this occurs the proposed algorithm exploits the raw depth signal intensity. The fusion of detection result and raw signal intensity is integrated with the tracking task in a principled manner via the Bayesian paradigm and labeled random finite set (RFS). Our case study shows that the proposed method can reliably track people in a recently published 3D indoor data set.","PeriodicalId":347974,"journal":{"name":"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Data fusion in 3D vision using a RGB-D data via switching observation model and its application to people tracking\",\"authors\":\"D. Kim, B. Vo, B. Vo\",\"doi\":\"10.1109/ICCAIS.2013.6720536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new method for 3D people tracking with RGB-D observations. The proposed method fuses RGB and depth data via a switching observation model. Specifically, the proposed switching observation model intelligently exploits both final detection results and raw signal intensity in a complementary manner in order to cope with missing detections. In real-world applications, the detector response to RGB data is frequently missing. When this occurs the proposed algorithm exploits the raw depth signal intensity. The fusion of detection result and raw signal intensity is integrated with the tracking task in a principled manner via the Bayesian paradigm and labeled random finite set (RFS). Our case study shows that the proposed method can reliably track people in a recently published 3D indoor data set.\",\"PeriodicalId\":347974,\"journal\":{\"name\":\"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS.2013.6720536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2013.6720536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文提出了一种利用RGB-D观测进行三维人物跟踪的新方法。该方法通过切换观测模型融合RGB和深度数据。具体而言,所提出的切换观测模型以互补的方式智能地利用最终检测结果和原始信号强度,以应对缺失检测。在实际应用中,检测器对RGB数据的响应经常缺失。当这种情况发生时,提出的算法利用原始深度信号强度。通过贝叶斯范式和标记随机有限集(RFS),将检测结果和原始信号强度的融合与跟踪任务有原则地结合起来。我们的案例研究表明,该方法可以可靠地跟踪最近发布的3D室内数据集中的人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data fusion in 3D vision using a RGB-D data via switching observation model and its application to people tracking
In this paper, we propose a new method for 3D people tracking with RGB-D observations. The proposed method fuses RGB and depth data via a switching observation model. Specifically, the proposed switching observation model intelligently exploits both final detection results and raw signal intensity in a complementary manner in order to cope with missing detections. In real-world applications, the detector response to RGB data is frequently missing. When this occurs the proposed algorithm exploits the raw depth signal intensity. The fusion of detection result and raw signal intensity is integrated with the tracking task in a principled manner via the Bayesian paradigm and labeled random finite set (RFS). Our case study shows that the proposed method can reliably track people in a recently published 3D indoor data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信