利用一种新的广义阿基米德Copula进行风险聚集和资本配置

Fouad Marri, Khouzeima Moutanabbir
{"title":"利用一种新的广义阿基米德Copula进行风险聚集和资本配置","authors":"Fouad Marri, Khouzeima Moutanabbir","doi":"10.2139/ssrn.3802834","DOIUrl":null,"url":null,"abstract":"In this paper, we address risk aggregation and capital allocation problems in the presence of dependence between risks. The dependence structure is defined by a mixed Bernstein copula which represents a generalization of the well-known Archimedean copulas. Using this new copula, the probability density function and the cumulative distribution function of the aggregate risk are obtained. Then, closed-form expressions for basic risk measures, such as tail value-at risk (TVaR) and TVaR-based allocations, are derived.","PeriodicalId":251522,"journal":{"name":"Risk Management & Analysis in Financial Institutions eJournal","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Risk Aggregation and Capital Allocation Using a New Generalized Archimedean Copula\",\"authors\":\"Fouad Marri, Khouzeima Moutanabbir\",\"doi\":\"10.2139/ssrn.3802834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address risk aggregation and capital allocation problems in the presence of dependence between risks. The dependence structure is defined by a mixed Bernstein copula which represents a generalization of the well-known Archimedean copulas. Using this new copula, the probability density function and the cumulative distribution function of the aggregate risk are obtained. Then, closed-form expressions for basic risk measures, such as tail value-at risk (TVaR) and TVaR-based allocations, are derived.\",\"PeriodicalId\":251522,\"journal\":{\"name\":\"Risk Management & Analysis in Financial Institutions eJournal\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Management & Analysis in Financial Institutions eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3802834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management & Analysis in Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3802834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了风险之间存在依赖关系时的风险聚集和资本配置问题。依赖结构由混合Bernstein copula定义,该copula是对著名的阿基米德copula的推广。利用这一新的联结公式,得到了总风险的概率密度函数和累积分布函数。然后,导出了基本风险度量的封闭表达式,如尾部风险值(TVaR)和基于TVaR的分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk Aggregation and Capital Allocation Using a New Generalized Archimedean Copula
In this paper, we address risk aggregation and capital allocation problems in the presence of dependence between risks. The dependence structure is defined by a mixed Bernstein copula which represents a generalization of the well-known Archimedean copulas. Using this new copula, the probability density function and the cumulative distribution function of the aggregate risk are obtained. Then, closed-form expressions for basic risk measures, such as tail value-at risk (TVaR) and TVaR-based allocations, are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信