平面波导结的人工神经网络

N. Chouaib, M. Guglielmi, V.F. Boria
{"title":"平面波导结的人工神经网络","authors":"N. Chouaib, M. Guglielmi, V.F. Boria","doi":"10.1109/MIAME.1999.827825","DOIUrl":null,"url":null,"abstract":"In recent years, artificial neural networks (ANNs) have been introduced as fast and accurate tools for modeling simulating and optimizing a great variety of microwave structures. In this paper we propose a multilayer perceptron neural network (MLPNN) for modelling planar waveguide junctions involving waveguides with arbitrary shapes and with variable geometrical features. The artificial neural network has been used to represent the modal spectrum of the arbitrary waveguides, and the coupling-integrals between such waveguides and standard rectangular waveguides, as a function of the variable geometrical feature(s). The training data set has been obtained,using an accurate but slow electromagnetic simulation algorithm. The result obtained is shown to be a very accurate and extremely, efficient representation of the waveguide junction.","PeriodicalId":132112,"journal":{"name":"Proceedings of the IEEE - Russia Conference. 1999 High Power Microwave Electronics: Measurements, Identification, Applications. MIA-ME'99 (Cat. No.99EX289)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial neural networks for planar waveguide junctions\",\"authors\":\"N. Chouaib, M. Guglielmi, V.F. Boria\",\"doi\":\"10.1109/MIAME.1999.827825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, artificial neural networks (ANNs) have been introduced as fast and accurate tools for modeling simulating and optimizing a great variety of microwave structures. In this paper we propose a multilayer perceptron neural network (MLPNN) for modelling planar waveguide junctions involving waveguides with arbitrary shapes and with variable geometrical features. The artificial neural network has been used to represent the modal spectrum of the arbitrary waveguides, and the coupling-integrals between such waveguides and standard rectangular waveguides, as a function of the variable geometrical feature(s). The training data set has been obtained,using an accurate but slow electromagnetic simulation algorithm. The result obtained is shown to be a very accurate and extremely, efficient representation of the waveguide junction.\",\"PeriodicalId\":132112,\"journal\":{\"name\":\"Proceedings of the IEEE - Russia Conference. 1999 High Power Microwave Electronics: Measurements, Identification, Applications. MIA-ME'99 (Cat. No.99EX289)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE - Russia Conference. 1999 High Power Microwave Electronics: Measurements, Identification, Applications. MIA-ME'99 (Cat. No.99EX289)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIAME.1999.827825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE - Russia Conference. 1999 High Power Microwave Electronics: Measurements, Identification, Applications. MIA-ME'99 (Cat. No.99EX289)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIAME.1999.827825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,人工神经网络(ann)作为一种快速、准确的工具被引入到各种微波结构的建模、仿真和优化中。在本文中,我们提出了一种多层感知器神经网络(MLPNN)来模拟平面波导结,其中包括具有任意形状和可变几何特征的波导。人工神经网络被用来表示任意波导的模态谱,以及这些波导与标准矩形波导之间的耦合积分,作为可变几何特征的函数。利用一种精确但速度慢的电磁仿真算法,获得了训练数据集。所得到的结果被证明是一个非常准确和非常有效的波导结的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural networks for planar waveguide junctions
In recent years, artificial neural networks (ANNs) have been introduced as fast and accurate tools for modeling simulating and optimizing a great variety of microwave structures. In this paper we propose a multilayer perceptron neural network (MLPNN) for modelling planar waveguide junctions involving waveguides with arbitrary shapes and with variable geometrical features. The artificial neural network has been used to represent the modal spectrum of the arbitrary waveguides, and the coupling-integrals between such waveguides and standard rectangular waveguides, as a function of the variable geometrical feature(s). The training data set has been obtained,using an accurate but slow electromagnetic simulation algorithm. The result obtained is shown to be a very accurate and extremely, efficient representation of the waveguide junction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信