使用机器学习技术预测潜在的药物滥用者

Zhaoying Qiao, Tianrui Chai, Qinjing Zhang, Xinyi Zhou, Zhuoling Chu
{"title":"使用机器学习技术预测潜在的药物滥用者","authors":"Zhaoying Qiao, Tianrui Chai, Qinjing Zhang, Xinyi Zhou, Zhuoling Chu","doi":"10.1109/ICIIBMS46890.2019.8991550","DOIUrl":null,"url":null,"abstract":"Drug abuse is a noteworthy public health problem in the world. Recently, machine learning has become a favorable tool for classification problem. In this paper, we selected three machine learning algorithms (random forest (RF), Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) ) to predict potential abuse individuals of methamphetamine and amyl nitrite, two kinds of central stimulants, as well as users’ last consumption time based on personality traits and demographic information. Compared with k-NearestNeighbor, a widely-used classification algorithm, RF, XGBoost and LightGBM have superior performance, with LightGBM being the most efficient one in predicting potential user and estimating usage time. The results of feature importance indicate neuroticism is the most important predictor of drug abuse risk.","PeriodicalId":444797,"journal":{"name":"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Predicting potential drug abusers using machine learning techniques\",\"authors\":\"Zhaoying Qiao, Tianrui Chai, Qinjing Zhang, Xinyi Zhou, Zhuoling Chu\",\"doi\":\"10.1109/ICIIBMS46890.2019.8991550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drug abuse is a noteworthy public health problem in the world. Recently, machine learning has become a favorable tool for classification problem. In this paper, we selected three machine learning algorithms (random forest (RF), Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) ) to predict potential abuse individuals of methamphetamine and amyl nitrite, two kinds of central stimulants, as well as users’ last consumption time based on personality traits and demographic information. Compared with k-NearestNeighbor, a widely-used classification algorithm, RF, XGBoost and LightGBM have superior performance, with LightGBM being the most efficient one in predicting potential user and estimating usage time. The results of feature importance indicate neuroticism is the most important predictor of drug abuse risk.\",\"PeriodicalId\":444797,\"journal\":{\"name\":\"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIBMS46890.2019.8991550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS46890.2019.8991550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

药物滥用是当今世界一个值得关注的公共卫生问题。近年来,机器学习已经成为解决分类问题的一个很好的工具。本文选择随机森林(random forest, RF)、极限梯度增强(Extreme Gradient Boosting, XGBoost)和光梯度增强机(Light Gradient Boosting machine, LightGBM)三种机器学习算法,基于人格特征和人口统计信息预测甲基苯丙胺和亚硝酸盐戊酯这两种中枢兴奋剂的潜在滥用个体,以及使用者的最后消费时间。与广泛使用的k-NearestNeighbor分类算法相比,RF、XGBoost和LightGBM的性能更优,其中LightGBM在预测潜在用户和估计使用时间方面效率最高。特征重要性的结果表明,神经质是药物滥用风险最重要的预测因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting potential drug abusers using machine learning techniques
Drug abuse is a noteworthy public health problem in the world. Recently, machine learning has become a favorable tool for classification problem. In this paper, we selected three machine learning algorithms (random forest (RF), Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) ) to predict potential abuse individuals of methamphetamine and amyl nitrite, two kinds of central stimulants, as well as users’ last consumption time based on personality traits and demographic information. Compared with k-NearestNeighbor, a widely-used classification algorithm, RF, XGBoost and LightGBM have superior performance, with LightGBM being the most efficient one in predicting potential user and estimating usage time. The results of feature importance indicate neuroticism is the most important predictor of drug abuse risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信