通过自动规划合成并行图程序

Dimitrios Prountzos, R. Manevich, K. Pingali
{"title":"通过自动规划合成并行图程序","authors":"Dimitrios Prountzos, R. Manevich, K. Pingali","doi":"10.1145/2737924.2737953","DOIUrl":null,"url":null,"abstract":"We describe a system that uses automated planning to synthesize correct and efficient parallel graph programs from high-level algorithmic specifications. Automated planning allows us to use constraints to declaratively encode program transformations such as scheduling, implementation selection, and insertion of synchronization. Each plan emitted by the planner satisfies all constraints simultaneously, and corresponds to a composition of these transformations. In this way, we obtain an integrated compilation approach for a very challenging problem domain. We have used this system to synthesize parallel programs for four graph problems: triangle counting, maximal independent set computation, preflow-push maxflow, and connected components. Experiments on a variety of inputs show that the synthesized implementations perform competitively with hand-written, highly-tuned code.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Synthesizing parallel graph programs via automated planning\",\"authors\":\"Dimitrios Prountzos, R. Manevich, K. Pingali\",\"doi\":\"10.1145/2737924.2737953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a system that uses automated planning to synthesize correct and efficient parallel graph programs from high-level algorithmic specifications. Automated planning allows us to use constraints to declaratively encode program transformations such as scheduling, implementation selection, and insertion of synchronization. Each plan emitted by the planner satisfies all constraints simultaneously, and corresponds to a composition of these transformations. In this way, we obtain an integrated compilation approach for a very challenging problem domain. We have used this system to synthesize parallel programs for four graph problems: triangle counting, maximal independent set computation, preflow-push maxflow, and connected components. Experiments on a variety of inputs show that the synthesized implementations perform competitively with hand-written, highly-tuned code.\",\"PeriodicalId\":104101,\"journal\":{\"name\":\"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2737924.2737953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737924.2737953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

我们描述了一个系统,它使用自动规划来合成正确和有效的并行图程序从高级算法规范。自动化计划允许我们使用约束来声明性地编码程序转换,例如调度、实现选择和同步的插入。计划器发出的每个计划同时满足所有约束,并对应于这些转换的组合。通过这种方式,我们获得了一个非常具有挑战性的问题领域的集成编译方法。我们利用该系统合成了四个图问题的并行程序:三角形计数、最大独立集计算、preflow-push maxflow和连通分量。对各种输入的实验表明,合成实现与手工编写的、高度调优的代码相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesizing parallel graph programs via automated planning
We describe a system that uses automated planning to synthesize correct and efficient parallel graph programs from high-level algorithmic specifications. Automated planning allows us to use constraints to declaratively encode program transformations such as scheduling, implementation selection, and insertion of synchronization. Each plan emitted by the planner satisfies all constraints simultaneously, and corresponds to a composition of these transformations. In this way, we obtain an integrated compilation approach for a very challenging problem domain. We have used this system to synthesize parallel programs for four graph problems: triangle counting, maximal independent set computation, preflow-push maxflow, and connected components. Experiments on a variety of inputs show that the synthesized implementations perform competitively with hand-written, highly-tuned code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信