基于上下文感知置换不变性的实体同义关系提取

Nan Yan, Subin Huang, Chao Kong
{"title":"基于上下文感知置换不变性的实体同义关系提取","authors":"Nan Yan, Subin Huang, Chao Kong","doi":"10.4018/ijitwe.288039","DOIUrl":null,"url":null,"abstract":"Discovering entity synonymous relations is an important work for many entity-based applications. Existing entity synonymous relation extraction approaches are mainly based on lexical patterns or distributional corpus-level statistics, ignoring the context semantics between entities. For example, the contexts around ''apple'' determine whether ''apple'' is a kind of fruit or Apple Inc. In this paper, an entity synonymous relation extraction approach is proposed using context-aware permutation invariance. Specifically, a triplet network is used to obtain the permutation invariance between the entities to learn whether two given entities possess synonymous relation. To track more synonymous features, the relational context semantics and entity representations are integrated into the triplet network, which can improve the performance of extracting entity synonymous relations. The proposed approach is implemented on three real-world datasets. Experimental results demonstrate that the approach performs better than the other compared approaches on entity synonymous relation extraction task.","PeriodicalId":222340,"journal":{"name":"Int. J. Inf. Technol. Web Eng.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracting Entity Synonymous Relations via Context-Aware Permutation Invariance\",\"authors\":\"Nan Yan, Subin Huang, Chao Kong\",\"doi\":\"10.4018/ijitwe.288039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering entity synonymous relations is an important work for many entity-based applications. Existing entity synonymous relation extraction approaches are mainly based on lexical patterns or distributional corpus-level statistics, ignoring the context semantics between entities. For example, the contexts around ''apple'' determine whether ''apple'' is a kind of fruit or Apple Inc. In this paper, an entity synonymous relation extraction approach is proposed using context-aware permutation invariance. Specifically, a triplet network is used to obtain the permutation invariance between the entities to learn whether two given entities possess synonymous relation. To track more synonymous features, the relational context semantics and entity representations are integrated into the triplet network, which can improve the performance of extracting entity synonymous relations. The proposed approach is implemented on three real-world datasets. Experimental results demonstrate that the approach performs better than the other compared approaches on entity synonymous relation extraction task.\",\"PeriodicalId\":222340,\"journal\":{\"name\":\"Int. J. Inf. Technol. Web Eng.\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Web Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitwe.288039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Web Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitwe.288039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发现实体同义关系是许多基于实体的应用程序的一项重要工作。现有的实体同义关系提取方法主要基于词法模式或分布语料库级统计,忽略了实体之间的上下文语义。例如,围绕“苹果”的上下文决定了“苹果”是一种水果还是苹果公司。本文提出了一种基于上下文感知的排列不变性的实体同义关系提取方法。具体而言,利用三元组网络获取实体之间的排列不变性,以了解给定的两个实体是否具有同义关系。为了跟踪更多的同义特征,将关系上下文语义和实体表示集成到三元网络中,提高了实体同义关系提取的性能。该方法在三个真实数据集上实现。实验结果表明,该方法在实体同义关系提取任务上优于其他比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting Entity Synonymous Relations via Context-Aware Permutation Invariance
Discovering entity synonymous relations is an important work for many entity-based applications. Existing entity synonymous relation extraction approaches are mainly based on lexical patterns or distributional corpus-level statistics, ignoring the context semantics between entities. For example, the contexts around ''apple'' determine whether ''apple'' is a kind of fruit or Apple Inc. In this paper, an entity synonymous relation extraction approach is proposed using context-aware permutation invariance. Specifically, a triplet network is used to obtain the permutation invariance between the entities to learn whether two given entities possess synonymous relation. To track more synonymous features, the relational context semantics and entity representations are integrated into the triplet network, which can improve the performance of extracting entity synonymous relations. The proposed approach is implemented on three real-world datasets. Experimental results demonstrate that the approach performs better than the other compared approaches on entity synonymous relation extraction task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信