K. Badii, M. Naebe, G. Golkarnarenji, N. Dhami, Stephen Atkiss, Derek Buckmaster, B. Fox, H. Khayyam
{"title":"碳纤维稳定炉电加热器的节能研究","authors":"K. Badii, M. Naebe, G. Golkarnarenji, N. Dhami, Stephen Atkiss, Derek Buckmaster, B. Fox, H. Khayyam","doi":"10.1109/ICAIET.2014.27","DOIUrl":null,"url":null,"abstract":"Carbon fiber is an advanced material with high tensile strength and modulus, ideally suited for light weight applications. Carbon fiber properties are directly dependent on all aspects of production, especially the process step of thermal stabilization. Stabilization is considered to be one of the most critical process steps. Moreover, the stabilization process is the most energy consuming, time consuming and costly step. As oxidation is an exothermic process, constant airflow to uniformly remove heat from all tows across the towband is indispensable. Our approach is to develop an intelligent computational system that can construct an optimal Computational Fluid Dynamics (CFD) solution. In this study, an electrical heater has been designed by CFD modeling and intelligently controlled. The model results show that the uniform airflow and minimum turbulence kinetic energy can be achieved by combining intelligent system technology with CFD analysis strategy.","PeriodicalId":225159,"journal":{"name":"2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Energy Saving in Electric Heater of Carbon Fiber Stabilization Oven\",\"authors\":\"K. Badii, M. Naebe, G. Golkarnarenji, N. Dhami, Stephen Atkiss, Derek Buckmaster, B. Fox, H. Khayyam\",\"doi\":\"10.1109/ICAIET.2014.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon fiber is an advanced material with high tensile strength and modulus, ideally suited for light weight applications. Carbon fiber properties are directly dependent on all aspects of production, especially the process step of thermal stabilization. Stabilization is considered to be one of the most critical process steps. Moreover, the stabilization process is the most energy consuming, time consuming and costly step. As oxidation is an exothermic process, constant airflow to uniformly remove heat from all tows across the towband is indispensable. Our approach is to develop an intelligent computational system that can construct an optimal Computational Fluid Dynamics (CFD) solution. In this study, an electrical heater has been designed by CFD modeling and intelligently controlled. The model results show that the uniform airflow and minimum turbulence kinetic energy can be achieved by combining intelligent system technology with CFD analysis strategy.\",\"PeriodicalId\":225159,\"journal\":{\"name\":\"2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIET.2014.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIET.2014.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy Saving in Electric Heater of Carbon Fiber Stabilization Oven
Carbon fiber is an advanced material with high tensile strength and modulus, ideally suited for light weight applications. Carbon fiber properties are directly dependent on all aspects of production, especially the process step of thermal stabilization. Stabilization is considered to be one of the most critical process steps. Moreover, the stabilization process is the most energy consuming, time consuming and costly step. As oxidation is an exothermic process, constant airflow to uniformly remove heat from all tows across the towband is indispensable. Our approach is to develop an intelligent computational system that can construct an optimal Computational Fluid Dynamics (CFD) solution. In this study, an electrical heater has been designed by CFD modeling and intelligently controlled. The model results show that the uniform airflow and minimum turbulence kinetic energy can be achieved by combining intelligent system technology with CFD analysis strategy.