基于CNN的超分辨率方法综述

Rafaa Amen Kazem, JamilaH. Suad, Huda Abdulaali Abdulbaqi
{"title":"基于CNN的超分辨率方法综述","authors":"Rafaa Amen Kazem, JamilaH. Suad, Huda Abdulaali Abdulbaqi","doi":"10.37899/journallamultiapp.v1i4.444","DOIUrl":null,"url":null,"abstract":"Super Resolution is a field of image analysis that focuses on boosting the resolution of photographs and movies without compromising detail or visual appeal, instead enhancing both. Multiple (many input images and one output image) or single (one input and one output) stages are used to convert low-resolution photos to high-resolution photos. The study examines super-resolution methods based on a convolutional neural network (CNN) for super-resolution mapping at the sub-pixel level, as well as its primary characteristics and limitations for noisy or medical images.","PeriodicalId":272596,"journal":{"name":"Journal La Multiapp","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Survey on CNN based super resolution methods\",\"authors\":\"Rafaa Amen Kazem, JamilaH. Suad, Huda Abdulaali Abdulbaqi\",\"doi\":\"10.37899/journallamultiapp.v1i4.444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Super Resolution is a field of image analysis that focuses on boosting the resolution of photographs and movies without compromising detail or visual appeal, instead enhancing both. Multiple (many input images and one output image) or single (one input and one output) stages are used to convert low-resolution photos to high-resolution photos. The study examines super-resolution methods based on a convolutional neural network (CNN) for super-resolution mapping at the sub-pixel level, as well as its primary characteristics and limitations for noisy or medical images.\",\"PeriodicalId\":272596,\"journal\":{\"name\":\"Journal La Multiapp\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal La Multiapp\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37899/journallamultiapp.v1i4.444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal La Multiapp","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37899/journallamultiapp.v1i4.444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超级分辨率是图像分析的一个领域,其重点是在不影响细节或视觉吸引力的情况下提高照片和电影的分辨率,而不是增强两者。多个(多个输入图像和一个输出图像)或单个(一个输入和一个输出)阶段用于将低分辨率照片转换为高分辨率照片。该研究研究了基于卷积神经网络(CNN)的超分辨率方法,用于亚像素级的超分辨率映射,以及其对噪声或医学图像的主要特征和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Survey on CNN based super resolution methods
Super Resolution is a field of image analysis that focuses on boosting the resolution of photographs and movies without compromising detail or visual appeal, instead enhancing both. Multiple (many input images and one output image) or single (one input and one output) stages are used to convert low-resolution photos to high-resolution photos. The study examines super-resolution methods based on a convolutional neural network (CNN) for super-resolution mapping at the sub-pixel level, as well as its primary characteristics and limitations for noisy or medical images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信