基于神经网络的变速风能转换系统无风速传感器MPPT控制器

J. Thongam, P. Bouchard, R. Beguenane, I. Fofana
{"title":"基于神经网络的变速风能转换系统无风速传感器MPPT控制器","authors":"J. Thongam, P. Bouchard, R. Beguenane, I. Fofana","doi":"10.1109/EPEC.2010.5697221","DOIUrl":null,"url":null,"abstract":"A wind speed sensorless neural network (NN) based maximum power point tracking (MPPT) control algorithm for variable speed wind energy conversion system (WECS) is proposed. The proposed method is developed using Jordan type recurrent NN which is trained online using back-propagation. The algorithm, without requiring the knowledge of wind speed, air density or turbine parameters, generates at its output the optimum speed command for the speed control loop of the vector controlled machine side converter control system using only the instantaneous power as its input. The output of the NN is fed into a state input after a unit step delay completing the Jordan type recurrent neural network. The proposed concept is analyzed in a grid connected direct drive variable speed permanent magnet synchronous generator (PMSG) WECS with a back-to-back frequency converter. Vector control of the grid side converter is realized in the grid voltage vector reference frame. Simulation is carried out in order to verify the performance of the proposed controller.","PeriodicalId":393869,"journal":{"name":"2010 IEEE Electrical Power & Energy Conference","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Neural network based wind speed sensorless MPPT controller for variable speed wind energy conversion systems\",\"authors\":\"J. Thongam, P. Bouchard, R. Beguenane, I. Fofana\",\"doi\":\"10.1109/EPEC.2010.5697221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wind speed sensorless neural network (NN) based maximum power point tracking (MPPT) control algorithm for variable speed wind energy conversion system (WECS) is proposed. The proposed method is developed using Jordan type recurrent NN which is trained online using back-propagation. The algorithm, without requiring the knowledge of wind speed, air density or turbine parameters, generates at its output the optimum speed command for the speed control loop of the vector controlled machine side converter control system using only the instantaneous power as its input. The output of the NN is fed into a state input after a unit step delay completing the Jordan type recurrent neural network. The proposed concept is analyzed in a grid connected direct drive variable speed permanent magnet synchronous generator (PMSG) WECS with a back-to-back frequency converter. Vector control of the grid side converter is realized in the grid voltage vector reference frame. Simulation is carried out in order to verify the performance of the proposed controller.\",\"PeriodicalId\":393869,\"journal\":{\"name\":\"2010 IEEE Electrical Power & Energy Conference\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Electrical Power & Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEC.2010.5697221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electrical Power & Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2010.5697221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

提出了一种基于无风速传感器神经网络(NN)的变速风能转换系统最大功率点跟踪(MPPT)控制算法。该方法采用Jordan型递归神经网络,通过反向传播进行在线训练。该算法不需要知道风速、空气密度或涡轮参数,仅使用瞬时功率作为输入,在其输出处为矢量控制机侧变换器控制系统的速度控制回路生成最优速度命令。经过一个单位阶跃延迟后,将神经网络的输出送入状态输入,完成Jordan型递归神经网络。并以带背对背变频器的并网直接驱动永磁同步发电机(PMSG)为例进行了分析。电网侧变换器的矢量控制是在电网电压矢量参考系中实现的。为了验证所提出的控制器的性能,进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network based wind speed sensorless MPPT controller for variable speed wind energy conversion systems
A wind speed sensorless neural network (NN) based maximum power point tracking (MPPT) control algorithm for variable speed wind energy conversion system (WECS) is proposed. The proposed method is developed using Jordan type recurrent NN which is trained online using back-propagation. The algorithm, without requiring the knowledge of wind speed, air density or turbine parameters, generates at its output the optimum speed command for the speed control loop of the vector controlled machine side converter control system using only the instantaneous power as its input. The output of the NN is fed into a state input after a unit step delay completing the Jordan type recurrent neural network. The proposed concept is analyzed in a grid connected direct drive variable speed permanent magnet synchronous generator (PMSG) WECS with a back-to-back frequency converter. Vector control of the grid side converter is realized in the grid voltage vector reference frame. Simulation is carried out in order to verify the performance of the proposed controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信