自动社交图去匿名化技术

K. Sharad, G. Danezis
{"title":"自动社交图去匿名化技术","authors":"K. Sharad, G. Danezis","doi":"10.1145/2665943.2665960","DOIUrl":null,"url":null,"abstract":"We present a generic and automated approach to re-identifying nodes in anonymized social networks which enables novel anonymization techniques to be quickly evaluated. It uses machine learning (decision forests) to matching pairs of nodes in disparate anonymized sub-graphs. The technique uncovers artefacts and invariants of any black-box anonymization scheme from a small set of examples. Despite a high degree of automation, classification succeeds with significant true positive rates even when small false positive rates are sought. Our evaluation uses publicly available real world datasets to study the performance of our approach against real-world anonymization strategies, namely the schemes used to protect datasets of The Data for Development (D4D) Challenge. We show that the technique is effective even when only small numbers of samples are used for training. Further, since it detects weaknesses in the black-box anonymization scheme it can re-identify nodes in one social network when trained on another.","PeriodicalId":408627,"journal":{"name":"Proceedings of the 13th Workshop on Privacy in the Electronic Society","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"An Automated Social Graph De-anonymization Technique\",\"authors\":\"K. Sharad, G. Danezis\",\"doi\":\"10.1145/2665943.2665960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a generic and automated approach to re-identifying nodes in anonymized social networks which enables novel anonymization techniques to be quickly evaluated. It uses machine learning (decision forests) to matching pairs of nodes in disparate anonymized sub-graphs. The technique uncovers artefacts and invariants of any black-box anonymization scheme from a small set of examples. Despite a high degree of automation, classification succeeds with significant true positive rates even when small false positive rates are sought. Our evaluation uses publicly available real world datasets to study the performance of our approach against real-world anonymization strategies, namely the schemes used to protect datasets of The Data for Development (D4D) Challenge. We show that the technique is effective even when only small numbers of samples are used for training. Further, since it detects weaknesses in the black-box anonymization scheme it can re-identify nodes in one social network when trained on another.\",\"PeriodicalId\":408627,\"journal\":{\"name\":\"Proceedings of the 13th Workshop on Privacy in the Electronic Society\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th Workshop on Privacy in the Electronic Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2665943.2665960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th Workshop on Privacy in the Electronic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2665943.2665960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

我们提出了一种通用的自动化方法来重新识别匿名社交网络中的节点,这使得新的匿名化技术能够被快速评估。它使用机器学习(决策森林)来匹配不同匿名子图中的节点对。该技术从一小部分示例中揭示任何黑盒匿名方案的工件和不变量。尽管自动化程度很高,但即使在寻找小的假阳性率时,分类也能取得显著的真阳性率。我们的评估使用公开的真实世界数据集来研究我们的方法与真实世界匿名化策略(即用于保护数据促进发展(D4D)挑战的数据集的方案)的性能。我们表明,即使只使用少量样本进行训练,该技术也是有效的。此外,由于它检测到黑盒匿名方案中的弱点,它可以在对另一个社交网络进行训练时重新识别一个社交网络中的节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Automated Social Graph De-anonymization Technique
We present a generic and automated approach to re-identifying nodes in anonymized social networks which enables novel anonymization techniques to be quickly evaluated. It uses machine learning (decision forests) to matching pairs of nodes in disparate anonymized sub-graphs. The technique uncovers artefacts and invariants of any black-box anonymization scheme from a small set of examples. Despite a high degree of automation, classification succeeds with significant true positive rates even when small false positive rates are sought. Our evaluation uses publicly available real world datasets to study the performance of our approach against real-world anonymization strategies, namely the schemes used to protect datasets of The Data for Development (D4D) Challenge. We show that the technique is effective even when only small numbers of samples are used for training. Further, since it detects weaknesses in the black-box anonymization scheme it can re-identify nodes in one social network when trained on another.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信