缓存恢复:架构易失性STT-RAM缓存以增强cmp中的性能

Adwait Jog, Asit K. Mishra, Cong Xu, Yuan Xie, N. Vijaykrishnan, R. Iyer, C. Das
{"title":"缓存恢复:架构易失性STT-RAM缓存以增强cmp中的性能","authors":"Adwait Jog, Asit K. Mishra, Cong Xu, Yuan Xie, N. Vijaykrishnan, R. Iyer, C. Das","doi":"10.1145/2228360.2228406","DOIUrl":null,"url":null,"abstract":"High density, low leakage and non-volatility are the attractive features of Spin-Transfer-Torque-RAM (STT-RAM), which has made it a strong competitor against SRAM as a universal memory replacement in multi-core systems. However, STT-RAM suffers from high write latency and energy which has impeded its widespread adoption. To this end, we look at trading-off STT-RAM's non-volatility property (data-retention-time) to overcome these problems. We formulate the relationship between retention-time and write-latency, and find optimal retention-time for architecting an efficient cache hierarchy using STT-RAM. Our results show that, compared to SRAM-based design, our proposal can improve performance and energy consumption by 18% and 60%, respectively.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"275","resultStr":"{\"title\":\"Cache revive: Architecting volatile STT-RAM caches for enhanced performance in CMPs\",\"authors\":\"Adwait Jog, Asit K. Mishra, Cong Xu, Yuan Xie, N. Vijaykrishnan, R. Iyer, C. Das\",\"doi\":\"10.1145/2228360.2228406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High density, low leakage and non-volatility are the attractive features of Spin-Transfer-Torque-RAM (STT-RAM), which has made it a strong competitor against SRAM as a universal memory replacement in multi-core systems. However, STT-RAM suffers from high write latency and energy which has impeded its widespread adoption. To this end, we look at trading-off STT-RAM's non-volatility property (data-retention-time) to overcome these problems. We formulate the relationship between retention-time and write-latency, and find optimal retention-time for architecting an efficient cache hierarchy using STT-RAM. Our results show that, compared to SRAM-based design, our proposal can improve performance and energy consumption by 18% and 60%, respectively.\",\"PeriodicalId\":263599,\"journal\":{\"name\":\"DAC Design Automation Conference 2012\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"275\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAC Design Automation Conference 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2228360.2228406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 275

摘要

高密度、低泄漏和无挥发性是自旋传输扭矩ram (STT-RAM)具有吸引力的特点,这使其成为SRAM在多核系统中作为通用存储器替代品的有力竞争者。然而,STT-RAM的高写入延迟和能量阻碍了它的广泛采用。为此,我们考虑权衡STT-RAM的非易失性(数据保留时间)来克服这些问题。我们制定了保留时间和写延迟之间的关系,并找到了使用STT-RAM构建高效缓存层次结构的最佳保留时间。我们的研究结果表明,与基于sram的设计相比,我们的建议可以分别提高18%和60%的性能和能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cache revive: Architecting volatile STT-RAM caches for enhanced performance in CMPs
High density, low leakage and non-volatility are the attractive features of Spin-Transfer-Torque-RAM (STT-RAM), which has made it a strong competitor against SRAM as a universal memory replacement in multi-core systems. However, STT-RAM suffers from high write latency and energy which has impeded its widespread adoption. To this end, we look at trading-off STT-RAM's non-volatility property (data-retention-time) to overcome these problems. We formulate the relationship between retention-time and write-latency, and find optimal retention-time for architecting an efficient cache hierarchy using STT-RAM. Our results show that, compared to SRAM-based design, our proposal can improve performance and energy consumption by 18% and 60%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信