立体视频去模糊的交叉视图集成

H. Imani, Md Baharul Islam
{"title":"立体视频去模糊的交叉视图集成","authors":"H. Imani, Md Baharul Islam","doi":"10.1109/ISPACS57703.2022.10082850","DOIUrl":null,"url":null,"abstract":"Stereoscopic cameras are now often seen in modern technology, including new Cellphones. Numerous elements, such as blur artifacts from camera/object motion, might influence the stereo video's quality. There are various deblurring techniques for monocular content, yet there are not many works for stereo content. A novel encoder-decoder-based stereoscopic video deblurring model presented in this work considers the subsequent left and right video frames. This approach employs the cross-view stereoscopic information to aid in deblurring. The proposed model uses the left and right stereoscopic frames and some nearby left and right frames as inputs to deblur the middle stereo frames. To extract their features, we first apply the stereo batch of frames to the encoder of our model. The left and right features are then fused together after being aggregated using the Parallax Attention Module (PAM). The decoder then extracts the deblurred stereo video frames using the output of PAM features. According to experimental findings on the recently proposed Stereo Blur dataset, the proposed approach effectively deblurs the stereoscopic video frames.","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-View Integration for Stereoscopic Video Deblurring\",\"authors\":\"H. Imani, Md Baharul Islam\",\"doi\":\"10.1109/ISPACS57703.2022.10082850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stereoscopic cameras are now often seen in modern technology, including new Cellphones. Numerous elements, such as blur artifacts from camera/object motion, might influence the stereo video's quality. There are various deblurring techniques for monocular content, yet there are not many works for stereo content. A novel encoder-decoder-based stereoscopic video deblurring model presented in this work considers the subsequent left and right video frames. This approach employs the cross-view stereoscopic information to aid in deblurring. The proposed model uses the left and right stereoscopic frames and some nearby left and right frames as inputs to deblur the middle stereo frames. To extract their features, we first apply the stereo batch of frames to the encoder of our model. The left and right features are then fused together after being aggregated using the Parallax Attention Module (PAM). The decoder then extracts the deblurred stereo video frames using the output of PAM features. According to experimental findings on the recently proposed Stereo Blur dataset, the proposed approach effectively deblurs the stereoscopic video frames.\",\"PeriodicalId\":410603,\"journal\":{\"name\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS57703.2022.10082850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

立体摄像头现在经常出现在现代技术中,包括新的手机。许多因素,如相机/物体运动产生的模糊伪影,可能会影响立体视频的质量。针对单眼内容的去模糊技术有很多,但针对立体内容的去模糊技术还不多。本文提出了一种新的基于编码器-解码器的立体视频去模糊模型,该模型考虑了随后的左右视频帧。这种方法利用横向立体信息来帮助去模糊。该模型使用左右立体帧和附近的左右立体帧作为输入来消除中间立体帧的模糊。为了提取它们的特征,我们首先将立体批帧应用到模型的编码器上。然后使用视差注意模块(PAM)进行聚合后,将左右特征融合在一起。解码器然后利用PAM特征的输出提取去模糊的立体视频帧。根据最近提出的立体模糊数据集的实验结果,提出的方法有效地消除了立体视频帧的模糊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-View Integration for Stereoscopic Video Deblurring
Stereoscopic cameras are now often seen in modern technology, including new Cellphones. Numerous elements, such as blur artifacts from camera/object motion, might influence the stereo video's quality. There are various deblurring techniques for monocular content, yet there are not many works for stereo content. A novel encoder-decoder-based stereoscopic video deblurring model presented in this work considers the subsequent left and right video frames. This approach employs the cross-view stereoscopic information to aid in deblurring. The proposed model uses the left and right stereoscopic frames and some nearby left and right frames as inputs to deblur the middle stereo frames. To extract their features, we first apply the stereo batch of frames to the encoder of our model. The left and right features are then fused together after being aggregated using the Parallax Attention Module (PAM). The decoder then extracts the deblurred stereo video frames using the output of PAM features. According to experimental findings on the recently proposed Stereo Blur dataset, the proposed approach effectively deblurs the stereoscopic video frames.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信