基于统计模型的复杂背景鲁棒运动检测算法

Zhen Yu, Yanping Chen
{"title":"基于统计模型的复杂背景鲁棒运动检测算法","authors":"Zhen Yu, Yanping Chen","doi":"10.1109/RAMECH.2008.4681448","DOIUrl":null,"url":null,"abstract":"Based on the fact that most of the algorithms assume that the camera is fixed and the changing background is learned in the training period, a robust algorithm is proposed for complex background where a shaking camera, changing background and shadows are presented. It combines a new improved mixture of Gaussians model and a square neighborhood matching algorithm to eliminate shadows and reduce false positive detections caused by camera motion and changing background. Experiments results demonstrate the efficiency and accuracy of this algorithm.","PeriodicalId":320560,"journal":{"name":"2008 IEEE Conference on Robotics, Automation and Mechatronics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Robust Motion Detection Algorithm for Complex Background Using Statistical Models\",\"authors\":\"Zhen Yu, Yanping Chen\",\"doi\":\"10.1109/RAMECH.2008.4681448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the fact that most of the algorithms assume that the camera is fixed and the changing background is learned in the training period, a robust algorithm is proposed for complex background where a shaking camera, changing background and shadows are presented. It combines a new improved mixture of Gaussians model and a square neighborhood matching algorithm to eliminate shadows and reduce false positive detections caused by camera motion and changing background. Experiments results demonstrate the efficiency and accuracy of this algorithm.\",\"PeriodicalId\":320560,\"journal\":{\"name\":\"2008 IEEE Conference on Robotics, Automation and Mechatronics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Conference on Robotics, Automation and Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMECH.2008.4681448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Conference on Robotics, Automation and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMECH.2008.4681448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对大多数算法都假定摄像机是固定的,并且在训练过程中学习到背景变化的事实,提出了一种针对摄像机抖动、背景变化和阴影等复杂背景的鲁棒算法。它结合了一种新的改进的混合高斯模型和正方形邻域匹配算法来消除阴影,减少由于摄像机运动和背景变化引起的假阳性检测。实验结果证明了该算法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Motion Detection Algorithm for Complex Background Using Statistical Models
Based on the fact that most of the algorithms assume that the camera is fixed and the changing background is learned in the training period, a robust algorithm is proposed for complex background where a shaking camera, changing background and shadows are presented. It combines a new improved mixture of Gaussians model and a square neighborhood matching algorithm to eliminate shadows and reduce false positive detections caused by camera motion and changing background. Experiments results demonstrate the efficiency and accuracy of this algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信