利用图像处理技术早期检测幼儿园在校学生健康状况

M. Rasyid, Z. Zainuddin, Andani Andani
{"title":"利用图像处理技术早期检测幼儿园在校学生健康状况","authors":"M. Rasyid, Z. Zainuddin, Andani Andani","doi":"10.4108/EAI.2-5-2019.2284609","DOIUrl":null,"url":null,"abstract":"The health early detection system for kindergarten students helps teachers to monitor the health conditions of students. For this reason, the purpose of this system is to propose a system that can detect the health of kindergarten students so that teachers can concentrate more on teaching. This paper presents a technique of combining facial recognition and movement classification for health classifications. For expression recognition, this system uses the PCA method to extract features, then the Euclidean distance algorithm is used to calculate between Eigen Face images and test images. Classification of movements, this study uses two classifications namely active and inactive. For recognition of facial expressions, this system obtains an accuracy of 83.75%.","PeriodicalId":355290,"journal":{"name":"Proceedings of the 1st International Conference on Science and Technology, ICOST 2019, 2-3 May, Makassar, Indonesia","volume":"342 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Early Detection of Health Kindergarten Student at School Using Image Processing Technology\",\"authors\":\"M. Rasyid, Z. Zainuddin, Andani Andani\",\"doi\":\"10.4108/EAI.2-5-2019.2284609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The health early detection system for kindergarten students helps teachers to monitor the health conditions of students. For this reason, the purpose of this system is to propose a system that can detect the health of kindergarten students so that teachers can concentrate more on teaching. This paper presents a technique of combining facial recognition and movement classification for health classifications. For expression recognition, this system uses the PCA method to extract features, then the Euclidean distance algorithm is used to calculate between Eigen Face images and test images. Classification of movements, this study uses two classifications namely active and inactive. For recognition of facial expressions, this system obtains an accuracy of 83.75%.\",\"PeriodicalId\":355290,\"journal\":{\"name\":\"Proceedings of the 1st International Conference on Science and Technology, ICOST 2019, 2-3 May, Makassar, Indonesia\",\"volume\":\"342 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Conference on Science and Technology, ICOST 2019, 2-3 May, Makassar, Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/EAI.2-5-2019.2284609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on Science and Technology, ICOST 2019, 2-3 May, Makassar, Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.2-5-2019.2284609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

幼儿园学生健康早期检测系统帮助教师监测学生的健康状况。因此,本系统的目的是提出一个能够检测幼儿园学生健康状况的系统,以便教师能够更加专注于教学。提出了一种人脸识别与运动分类相结合的健康分类技术。在表情识别方面,采用主成分分析法提取特征,然后利用欧几里得距离算法计算特征人脸图像与测试图像之间的距离。运动的分类,本研究使用两种分类,即积极和不积极。对于面部表情的识别,该系统的准确率达到83.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early Detection of Health Kindergarten Student at School Using Image Processing Technology
The health early detection system for kindergarten students helps teachers to monitor the health conditions of students. For this reason, the purpose of this system is to propose a system that can detect the health of kindergarten students so that teachers can concentrate more on teaching. This paper presents a technique of combining facial recognition and movement classification for health classifications. For expression recognition, this system uses the PCA method to extract features, then the Euclidean distance algorithm is used to calculate between Eigen Face images and test images. Classification of movements, this study uses two classifications namely active and inactive. For recognition of facial expressions, this system obtains an accuracy of 83.75%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信