移动自组织网络:一种强化学习方法

Yu-Han Chang, T. Ho, L. Kaelbling
{"title":"移动自组织网络:一种强化学习方法","authors":"Yu-Han Chang, T. Ho, L. Kaelbling","doi":"10.1109/ICAC.2004.39","DOIUrl":null,"url":null,"abstract":"With the cost of wireless networking and computational power rapidly dropping, mobile ad-hoc networks will soon become an important part of our society's computing structures. While there is a great deal of research from the networking community regarding the routing of information over such networks, most of these techniques lack automatic adaptivity. The size and complexity of these networks demand that we apply the principles of autonomic computing to this problem. Reinforcement learning methods can be used to control both packet routing decisions and node mobility, dramatically improving the connectivity of the network. We present two applications of reinforcement learning methods to the mobilized ad-hoc networking domain and demonstrate some promising empirical results under a variety of different scenarios in which the mobile nodes in our ad-hoc network are embedded with these adaptive routing policies and learned movement policies.","PeriodicalId":345031,"journal":{"name":"International Conference on Autonomic Computing, 2004. Proceedings.","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"Mobilized ad-hoc networks: a reinforcement learning approach\",\"authors\":\"Yu-Han Chang, T. Ho, L. Kaelbling\",\"doi\":\"10.1109/ICAC.2004.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the cost of wireless networking and computational power rapidly dropping, mobile ad-hoc networks will soon become an important part of our society's computing structures. While there is a great deal of research from the networking community regarding the routing of information over such networks, most of these techniques lack automatic adaptivity. The size and complexity of these networks demand that we apply the principles of autonomic computing to this problem. Reinforcement learning methods can be used to control both packet routing decisions and node mobility, dramatically improving the connectivity of the network. We present two applications of reinforcement learning methods to the mobilized ad-hoc networking domain and demonstrate some promising empirical results under a variety of different scenarios in which the mobile nodes in our ad-hoc network are embedded with these adaptive routing policies and learned movement policies.\",\"PeriodicalId\":345031,\"journal\":{\"name\":\"International Conference on Autonomic Computing, 2004. Proceedings.\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Autonomic Computing, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAC.2004.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Autonomic Computing, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2004.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

随着无线网络成本和计算能力的迅速下降,移动自组织网络将很快成为我们社会计算结构的重要组成部分。虽然网络社区对这种网络上的信息路由进行了大量的研究,但大多数这些技术缺乏自动适应性。这些网络的规模和复杂性要求我们应用自主计算的原则来解决这个问题。强化学习方法可用于控制数据包路由决策和节点移动性,显著提高网络的连通性。我们提出了两种强化学习方法在移动自组织网络领域的应用,并在各种不同的场景下展示了一些有希望的经验结果,其中自组织网络中的移动节点嵌入了这些自适应路由策略和学习的运动策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobilized ad-hoc networks: a reinforcement learning approach
With the cost of wireless networking and computational power rapidly dropping, mobile ad-hoc networks will soon become an important part of our society's computing structures. While there is a great deal of research from the networking community regarding the routing of information over such networks, most of these techniques lack automatic adaptivity. The size and complexity of these networks demand that we apply the principles of autonomic computing to this problem. Reinforcement learning methods can be used to control both packet routing decisions and node mobility, dramatically improving the connectivity of the network. We present two applications of reinforcement learning methods to the mobilized ad-hoc networking domain and demonstrate some promising empirical results under a variety of different scenarios in which the mobile nodes in our ad-hoc network are embedded with these adaptive routing policies and learned movement policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信