{"title":"将调度和物理设计集成到可重构计算体系结构的连贯编译周期中","authors":"K. Bazargan, S. Memik, M. Sarrafzadeh","doi":"10.1145/378239.379038","DOIUrl":null,"url":null,"abstract":"Advances in the FPGA technology, both in terms of device capacity and architecture, have resulted in introduction of reconfigurable computing machines, where the hardware adapts itself to the running application to gain speedup. To keep up with the ever-growing performance expectations of such systems, designers need new methodologies and tools for developing reconfigurable computing systems (RCS). This paper addresses the need for fast compilation and physical design phase to be used in application development/debugging/testing cycle for RCS. We present a high-level synthesis approach that is integrated with placement, making the compilation cycle much faster. On the average, our tool generates the VHDL code (and the corresponding placement information) from the data flow graph of a program in less than a minute. By compromising 30% in the clock frequency of the circuit, we can achieve about 10 times speedup in the Xilinx placement phase, and 2.5 times overall speedup in the Xilinx place-and-route phase, a reasonable trade-off when developing RCS applications.","PeriodicalId":154316,"journal":{"name":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","volume":"333 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Integrating scheduling and physical design into a coherent compilation cycle for reconfigurable computing architectures\",\"authors\":\"K. Bazargan, S. Memik, M. Sarrafzadeh\",\"doi\":\"10.1145/378239.379038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in the FPGA technology, both in terms of device capacity and architecture, have resulted in introduction of reconfigurable computing machines, where the hardware adapts itself to the running application to gain speedup. To keep up with the ever-growing performance expectations of such systems, designers need new methodologies and tools for developing reconfigurable computing systems (RCS). This paper addresses the need for fast compilation and physical design phase to be used in application development/debugging/testing cycle for RCS. We present a high-level synthesis approach that is integrated with placement, making the compilation cycle much faster. On the average, our tool generates the VHDL code (and the corresponding placement information) from the data flow graph of a program in less than a minute. By compromising 30% in the clock frequency of the circuit, we can achieve about 10 times speedup in the Xilinx placement phase, and 2.5 times overall speedup in the Xilinx place-and-route phase, a reasonable trade-off when developing RCS applications.\",\"PeriodicalId\":154316,\"journal\":{\"name\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"volume\":\"333 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/378239.379038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/378239.379038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating scheduling and physical design into a coherent compilation cycle for reconfigurable computing architectures
Advances in the FPGA technology, both in terms of device capacity and architecture, have resulted in introduction of reconfigurable computing machines, where the hardware adapts itself to the running application to gain speedup. To keep up with the ever-growing performance expectations of such systems, designers need new methodologies and tools for developing reconfigurable computing systems (RCS). This paper addresses the need for fast compilation and physical design phase to be used in application development/debugging/testing cycle for RCS. We present a high-level synthesis approach that is integrated with placement, making the compilation cycle much faster. On the average, our tool generates the VHDL code (and the corresponding placement information) from the data flow graph of a program in less than a minute. By compromising 30% in the clock frequency of the circuit, we can achieve about 10 times speedup in the Xilinx placement phase, and 2.5 times overall speedup in the Xilinx place-and-route phase, a reasonable trade-off when developing RCS applications.