Yong-Chao Tang, O. Benningshof, H. R. Mohebbi, David G. Cory, G. Miao
{"title":"具有接近增强的超导体微谐振器质量因子的评价","authors":"Yong-Chao Tang, O. Benningshof, H. R. Mohebbi, David G. Cory, G. Miao","doi":"10.1109/NANO.2014.6968001","DOIUrl":null,"url":null,"abstract":"The quality factor of microstrip line resonators made of 20/50/20 nm Nb/NbN/Nb trilayer films has been calculated as microwave transmission through the cascade of three single layers, and in agreement with experimental data. Each layer is evaluated with an explicit extended Zimmermann expression. The formula is generalized from the standard expression by including electron mean free path and the imaginary part of the gap energy of the material [1]. The quality factor of the microresonator consisting of a 50 nm thick single layer Nb film is also calculated by this compact expression and quantitatively agrees with the measured results as well. The quality factor of the microresonator made of trilayer films is shown to be larger than that of the microresonator with only a single Nb film.","PeriodicalId":367660,"journal":{"name":"14th IEEE International Conference on Nanotechnology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of quality factors in superconductor microresonators with proximity enhancement\",\"authors\":\"Yong-Chao Tang, O. Benningshof, H. R. Mohebbi, David G. Cory, G. Miao\",\"doi\":\"10.1109/NANO.2014.6968001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality factor of microstrip line resonators made of 20/50/20 nm Nb/NbN/Nb trilayer films has been calculated as microwave transmission through the cascade of three single layers, and in agreement with experimental data. Each layer is evaluated with an explicit extended Zimmermann expression. The formula is generalized from the standard expression by including electron mean free path and the imaginary part of the gap energy of the material [1]. The quality factor of the microresonator consisting of a 50 nm thick single layer Nb film is also calculated by this compact expression and quantitatively agrees with the measured results as well. The quality factor of the microresonator made of trilayer films is shown to be larger than that of the microresonator with only a single Nb film.\",\"PeriodicalId\":367660,\"journal\":{\"name\":\"14th IEEE International Conference on Nanotechnology\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2014.6968001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2014.6968001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of quality factors in superconductor microresonators with proximity enhancement
The quality factor of microstrip line resonators made of 20/50/20 nm Nb/NbN/Nb trilayer films has been calculated as microwave transmission through the cascade of three single layers, and in agreement with experimental data. Each layer is evaluated with an explicit extended Zimmermann expression. The formula is generalized from the standard expression by including electron mean free path and the imaginary part of the gap energy of the material [1]. The quality factor of the microresonator consisting of a 50 nm thick single layer Nb film is also calculated by this compact expression and quantitatively agrees with the measured results as well. The quality factor of the microresonator made of trilayer films is shown to be larger than that of the microresonator with only a single Nb film.