时变环境下的自动驾驶

T. Myers, L. Vlacic, T. Noel, M. Parent
{"title":"时变环境下的自动驾驶","authors":"T. Myers, L. Vlacic, T. Noel, M. Parent","doi":"10.1109/ARSO.2005.1511618","DOIUrl":null,"url":null,"abstract":"Robot motion is a field of continuing and active research that has recorded a number of achievements in the last decade, but research appears to be becoming stagnant in key areas. Current researchers limit the success of their work by using sensors with limited features capable of operating in static environments with known static obstacles and not considering implementation on non-holonomic vehicles. These simplifications of the task of dynamic obstacle avoidance greatly reduce the possible applications of current robot motion algorithms in areas such as autonomous driving. This paper deals with algorithms for on-the-fly avoidance of dynamic obstacle by presenting a new approach, the time-varying dynamic window algorithm capable of operating at high speeds on a non-holonomic vehicle in an environment that changes over time.","PeriodicalId":443174,"journal":{"name":"IEEE Workshop on Advanced Robotics and its Social Impacts, 2005.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Autonomous driving in a time-varying environment\",\"authors\":\"T. Myers, L. Vlacic, T. Noel, M. Parent\",\"doi\":\"10.1109/ARSO.2005.1511618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot motion is a field of continuing and active research that has recorded a number of achievements in the last decade, but research appears to be becoming stagnant in key areas. Current researchers limit the success of their work by using sensors with limited features capable of operating in static environments with known static obstacles and not considering implementation on non-holonomic vehicles. These simplifications of the task of dynamic obstacle avoidance greatly reduce the possible applications of current robot motion algorithms in areas such as autonomous driving. This paper deals with algorithms for on-the-fly avoidance of dynamic obstacle by presenting a new approach, the time-varying dynamic window algorithm capable of operating at high speeds on a non-holonomic vehicle in an environment that changes over time.\",\"PeriodicalId\":443174,\"journal\":{\"name\":\"IEEE Workshop on Advanced Robotics and its Social Impacts, 2005.\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Advanced Robotics and its Social Impacts, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARSO.2005.1511618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advanced Robotics and its Social Impacts, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARSO.2005.1511618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机器人运动是一个持续而活跃的研究领域,在过去十年中取得了许多成就,但在关键领域的研究似乎变得停滞不前。目前的研究人员限制了他们工作的成功,因为他们使用的传感器功能有限,只能在已知的静态障碍物的静态环境中工作,而不考虑在非完整车辆上实现。这些对动态避障任务的简化大大减少了当前机器人运动算法在自动驾驶等领域的应用。本文提出了一种新的动态避障算法——时变动态窗口算法,该算法能够在随时间变化的环境中对非完整车辆进行高速避障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous driving in a time-varying environment
Robot motion is a field of continuing and active research that has recorded a number of achievements in the last decade, but research appears to be becoming stagnant in key areas. Current researchers limit the success of their work by using sensors with limited features capable of operating in static environments with known static obstacles and not considering implementation on non-holonomic vehicles. These simplifications of the task of dynamic obstacle avoidance greatly reduce the possible applications of current robot motion algorithms in areas such as autonomous driving. This paper deals with algorithms for on-the-fly avoidance of dynamic obstacle by presenting a new approach, the time-varying dynamic window algorithm capable of operating at high speeds on a non-holonomic vehicle in an environment that changes over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信