快速特征点检测器

N. Nain, V. Laxmi, Bhavitavya Bhadviya, B. Deepak, Mushtaq Ahmed
{"title":"快速特征点检测器","authors":"N. Nain, V. Laxmi, Bhavitavya Bhadviya, B. Deepak, Mushtaq Ahmed","doi":"10.1109/SITIS.2008.97","DOIUrl":null,"url":null,"abstract":"This paper presents a new feature point detector that is accurate, efficient and fast. A detailed qualitative evaluation of the proposed feature point detector for gray scale images is then carried out in support of the proposed technique. Experiments have proved that this feature point detector is robust to affine transformations, noise and perspective deformations. More over the proposed detector requires only 28 additions per pixel to evaluate the interest point and its strength, making it one of the fastest feature detectors. The accuracy, speed and parallelizability of this algorithm makes it a strong contender for hardware implementations and applications requiring real time feature point abstraction.","PeriodicalId":202698,"journal":{"name":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fast Feature Point Detector\",\"authors\":\"N. Nain, V. Laxmi, Bhavitavya Bhadviya, B. Deepak, Mushtaq Ahmed\",\"doi\":\"10.1109/SITIS.2008.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new feature point detector that is accurate, efficient and fast. A detailed qualitative evaluation of the proposed feature point detector for gray scale images is then carried out in support of the proposed technique. Experiments have proved that this feature point detector is robust to affine transformations, noise and perspective deformations. More over the proposed detector requires only 28 additions per pixel to evaluate the interest point and its strength, making it one of the fastest feature detectors. The accuracy, speed and parallelizability of this algorithm makes it a strong contender for hardware implementations and applications requiring real time feature point abstraction.\",\"PeriodicalId\":202698,\"journal\":{\"name\":\"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2008.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2008.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种准确、高效、快速的特征点检测器。然后对所提出的灰度图像特征点检测器进行了详细的定性评估,以支持所提出的技术。实验证明,该特征点检测器对仿射变换、噪声和透视变形具有较强的鲁棒性。此外,所提出的检测器每像素只需要28个加法来评估兴趣点及其强度,使其成为最快的特征检测器之一。该算法的准确性、速度和并行性使其成为需要实时特征点抽象的硬件实现和应用的有力竞争者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Feature Point Detector
This paper presents a new feature point detector that is accurate, efficient and fast. A detailed qualitative evaluation of the proposed feature point detector for gray scale images is then carried out in support of the proposed technique. Experiments have proved that this feature point detector is robust to affine transformations, noise and perspective deformations. More over the proposed detector requires only 28 additions per pixel to evaluate the interest point and its strength, making it one of the fastest feature detectors. The accuracy, speed and parallelizability of this algorithm makes it a strong contender for hardware implementations and applications requiring real time feature point abstraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信