基于神经网络的感应电机传感器漂移补偿

R. Uthra, N. Kalaiarasi, A. Rathinam
{"title":"基于神经网络的感应电机传感器漂移补偿","authors":"R. Uthra, N. Kalaiarasi, A. Rathinam","doi":"10.1145/1980022.1980148","DOIUrl":null,"url":null,"abstract":"In this paper, sensor drift compensation of vector control of induction motor using neural network is presented. An induction motor is controlled based on vector control. The sensors sense the primary feedback signals for the feedback control system which is processed by the controller. Any fault in the sensors cause incorrect measurements of feedback signals due to malfunction in sensor circuit elements which affects the system performance. Hence, sensor fault compensation or drift compensation is important for an electric drive. Analysis of sensor drift compensation in motor drives is done using neural networks. The feedback signals from the phase current sensors are given as the neural network input. The neural network then performs the auto-associative mapping of these signals so that its output is an estimate of the sensed signals. Since the Auto-associative neural network exploits the physical and analytical redundancy, whenever a sensor starts to drift, the drift is compensated at the output, and the performance of the drive system is barely affected.","PeriodicalId":197580,"journal":{"name":"International Conference & Workshop on Emerging Trends in Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural network based sensor drift compensation of induction motor\",\"authors\":\"R. Uthra, N. Kalaiarasi, A. Rathinam\",\"doi\":\"10.1145/1980022.1980148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, sensor drift compensation of vector control of induction motor using neural network is presented. An induction motor is controlled based on vector control. The sensors sense the primary feedback signals for the feedback control system which is processed by the controller. Any fault in the sensors cause incorrect measurements of feedback signals due to malfunction in sensor circuit elements which affects the system performance. Hence, sensor fault compensation or drift compensation is important for an electric drive. Analysis of sensor drift compensation in motor drives is done using neural networks. The feedback signals from the phase current sensors are given as the neural network input. The neural network then performs the auto-associative mapping of these signals so that its output is an estimate of the sensed signals. Since the Auto-associative neural network exploits the physical and analytical redundancy, whenever a sensor starts to drift, the drift is compensated at the output, and the performance of the drive system is barely affected.\",\"PeriodicalId\":197580,\"journal\":{\"name\":\"International Conference & Workshop on Emerging Trends in Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference & Workshop on Emerging Trends in Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1980022.1980148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference & Workshop on Emerging Trends in Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1980022.1980148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于神经网络的感应电机矢量控制传感器漂移补偿方法。基于矢量控制对异步电动机进行控制。传感器对一次反馈信号进行感知,反馈给反馈控制系统,由控制器进行处理。当传感器出现故障时,由于传感器电路元件故障,会导致反馈信号测量错误,从而影响系统性能。因此,传感器故障补偿或漂移补偿对于电驱动是很重要的。利用神经网络对电机驱动中的传感器漂移补偿进行了分析。将来自相电流传感器的反馈信号作为神经网络的输入。然后,神经网络对这些信号进行自动关联映射,使其输出是对感知信号的估计。由于自关联神经网络利用了物理和分析冗余,每当传感器开始漂移时,漂移在输出处得到补偿,并且驱动系统的性能几乎没有受到影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network based sensor drift compensation of induction motor
In this paper, sensor drift compensation of vector control of induction motor using neural network is presented. An induction motor is controlled based on vector control. The sensors sense the primary feedback signals for the feedback control system which is processed by the controller. Any fault in the sensors cause incorrect measurements of feedback signals due to malfunction in sensor circuit elements which affects the system performance. Hence, sensor fault compensation or drift compensation is important for an electric drive. Analysis of sensor drift compensation in motor drives is done using neural networks. The feedback signals from the phase current sensors are given as the neural network input. The neural network then performs the auto-associative mapping of these signals so that its output is an estimate of the sensed signals. Since the Auto-associative neural network exploits the physical and analytical redundancy, whenever a sensor starts to drift, the drift is compensated at the output, and the performance of the drive system is barely affected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信