基于位置相关语料库的改进突发实时事件检测

J. Nützel, Frank Zimmermann
{"title":"基于位置相关语料库的改进突发实时事件检测","authors":"J. Nützel, Frank Zimmermann","doi":"10.1109/FiCloud.2015.131","DOIUrl":null,"url":null,"abstract":"This paper describes an approach to detect automatically events in real-time by analyzing big data streams coming from a social network. The social network Twitter will be used for experiments because of its easy to use API and messages having positioning data. The described event detection algorithm is a burst-based event detection methods extended by a dynamically adapted reference corpus. The usage of location dependent corpora allows also detecting the location of the found events.","PeriodicalId":182204,"journal":{"name":"2015 3rd International Conference on Future Internet of Things and Cloud","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Burst Based Real-Time Event Detection Using Location Dependent Corpora\",\"authors\":\"J. Nützel, Frank Zimmermann\",\"doi\":\"10.1109/FiCloud.2015.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an approach to detect automatically events in real-time by analyzing big data streams coming from a social network. The social network Twitter will be used for experiments because of its easy to use API and messages having positioning data. The described event detection algorithm is a burst-based event detection methods extended by a dynamically adapted reference corpus. The usage of location dependent corpora allows also detecting the location of the found events.\",\"PeriodicalId\":182204,\"journal\":{\"name\":\"2015 3rd International Conference on Future Internet of Things and Cloud\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd International Conference on Future Internet of Things and Cloud\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FiCloud.2015.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Future Internet of Things and Cloud","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud.2015.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了一种通过分析来自社交网络的大数据流来实时自动检测事件的方法。社交网络Twitter将被用于实验,因为它的API易于使用,而且消息中有定位数据。所描述的事件检测算法是一种基于突发的事件检测方法,通过动态适应参考语料库进行扩展。位置相关语料库的使用还允许检测所发现事件的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Burst Based Real-Time Event Detection Using Location Dependent Corpora
This paper describes an approach to detect automatically events in real-time by analyzing big data streams coming from a social network. The social network Twitter will be used for experiments because of its easy to use API and messages having positioning data. The described event detection algorithm is a burst-based event detection methods extended by a dynamically adapted reference corpus. The usage of location dependent corpora allows also detecting the location of the found events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信